Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 10
items per page: 25 50 75
Sort by:

Abstract

Function of duck (Anas platyrhynchos) major histocompatibility complex class I (Anpl-MHC I) molecules in binding peptides is through the peptide binding groove (PBG), which is thought to be influenced by the high polymorphism of α1 and α2 domains. However, little is known about the polymorphism of Anpl-MHC I peptide binding domain (PBD), especially in the domestic duck. Here, we analyzed the polymorphism of forty-eight Anpl-MHC I α1 and α2 domains from domestic duck breeds previously reported. All sequences were analyzed through multiple sequence alignment and a phylogenetic tree was constructed. The coefficient of variance of the peptide binding domains (PBDs) from WS, CV, JD, and SX duck breeds was estimated based on the Wu-Kabat variability index, followed by the location of the highly variable sites (HVSs) on reported crystal structure models. Analysis of α1 and α2 domains showed common features of classical MHC class I and high polymorphism, especially in α1 domain. The constructed phylogenetic tree showed that PBDs of domestic ducks did not segregate based on breeds and had a close phylogenetic relationship, even with wild ducks. In each breed, HVSs were mostly located in the PBG, suggesting that they might determine peptide-binding characteristics and subsequently influence peptide presentation and recognition. The combined results of sequence data and crystal structure provide novel valuable insights into the polymorphism and diversity of Anpl-MHC I PBDs that will facilitate further studies on disease resistance differences between duck breeds and the development of cytotoxic T-lymphocyte (CTL) epitope vaccines suited for preventing diseases in domestic ducks.
Go to article

Abstract

Tight junction proteins are important for the maintenance and repair of the intestinal mucosal barrier. The present study investigated relationships among tight junction protein gene expres- sion, porcine epidemic diarrhea virus (PEDV) infection, and intestinal mucosal morphology in piglets. We compared the expression of six tight junction proteins (ZO-1, ZO-2, Occludin, Claudin-1, Claudin-4, and Claudin-5) between seven-day-old piglets infected with PEDV and normal piglets, as well as in PEDV-infected porcine intestinal epithelial cells (IPEC-J2). We also evaluated differences in mucosal morphology between PEDV-infected and normal piglets. The expression of six tight junction protein genes was lower in PEDV-infected piglets than in the normal animals. The expression of ZO-1, ZO-2, Occludin, and Claudin-4 in the intestine tissue was significantly lower (p<0.05) in PEDV-infected than in normal piglets. The expression of Claudin-5 in the jejunum was significantly lower in PEDV-infected piglets than in the normal animals (p<0.01). The expression of Claudin-1 and Claudin-5 genes in the ileum was signifi- cantly higher in PEDV-infected piglets than in normal piglets (p<0.01). Morphologically, the intestinal mucosa in PEDV-infected piglets exhibited clear pathological changes, including breakage and shedding of intestinal villi. In PEDV-infected IPEC-J2 cells, the mRNA expression of the six tight junction proteins showed a downward trend; in particular, the expression of the Occludin and Claudin-4 genes was significantly lower (p<0.01). These data suggest that the expression of these six tight junction proteins, especially Occludin and Claudin-4, plays an important role in maintaining the integrity of the intestinal mucosal barrier and resistance to PEDV infection in piglets.
Go to article

Abstract

Investigation of the tensile and fatigue properties of cast magnesium alloys, created by the heated mold continuous casting process (HMC), was conducted. The mechanical properties of the Mg-HMC alloys were overall higher than those for the Mg alloys, made by the conventional gravity casting process (GC), and especially excellent mechanical properties were obtained for the Mg97Y2Zn1 -HMC alloy. This was because of the fine-grained structure composed of the -Mg phases with the interdendritic LPSO phase. Such mechanical properties were similar levels to those for conventional cast aluminum alloy (Al84.7Si10.5Cu2.5Fe1.3Zn1 alloys: ADC12), made by the GC process. Moreover, the tensile properties (UTS and f ) and fatigue properties of the Mg97Y2Zn1 -HMC alloy were about 1.5 times higher than that for the commercial Mg90Al9Zn1 -GC alloy (AZ91). The high correlation rate between tensile properties and fatigue strength (endurance limit: l ) was obtained. With newly proposed etching technique, the residual stress in the Mg97Y2Zn1 alloy could be revealed, and it appeared that the high internal stress was severely accumulated in and around the long-period stacking-order phases (LPSO). This was made during the solidification process due to the different shrinkage rate between α-Mg and LPSO. In this etching technique, microcracks were observed on the sample surface, and amount of micro-cracks (density) could be a parameter to determine the severity of the internal stress, i.e., a large amount to micro-cracks is caused by the high internal stress.
Go to article

Abstract

Phosphorothioate CpG oligodeoxynucleotides (ODN) are reported to be recognized by the membrane-bound TLR9 and trigger the MyD88-dependent up-regulation of Type I interferons and pro-inflammatory cytokines. Whether plasmids containing multiple CpG motifs stimulate the same signaling pathway is yet to be determined. The present results show that the CpG motifs enrich plasmid pUC18-CpG stimulates RAW 264.7 in vitro, mainly through the TBK1-mediated signaling pathway, causing the up-regulation of IFN-β, and pro-inflammatory cytokines TNF-α and IL-6. When pUC18-CpG is co-administered with the recombinant Echinococcus granulosus antigen, the antigen-specific antibody titers are markedly increased compared to the Quil-A adju- vanted group. Antigen specific cytokine quantification shows that cytokine profiles from the pUC18-CpG adjuvanted-group are switched to a Th1-biased immune response.
Go to article

Abstract

Heterogeneous nuclear ribonucleoprotein K (hnRNP K), is a multifunctional protein that participates in a variety of regulatory processes of signal transduction and gene expression. To further characterize the significance of hnRNP K in different male germ cells, we investigated the expression profiles of hnRNP K at different developmental stages in pig and rat testes, and conducted a comparative analysis of expression patterns between these two species. In porcine testis development, both the mRNA and protein level of hnRNP K were down-regulated from 3 months to 8 months. However, the expression level of hnRNP K was abundant across the embryonic period in rats, and decreased gradually from 0 day post partum (dpp) to 14 dpp, then increased with the highest level presenting at 90 dpp. Immunolocalization analysis further confirmed the differential expression and localization of hnRNP K protein during testis development in pigs and rats. The results showed that hnRNP K was widely distributed in gonocytes, spermatogonia, sertoli cells and Leydig cells. The dynamic expression profile of hnRNP K may imply its crucial and potential roles in the development of the testis, which will provide a theoretical basis for the future study of molecular mechanism regulation of spermatogenesis.
Go to article

Abstract

The aim was to explore the feasibility of using bamboo vinegar powder as an antibiotics substitute in weaning piglets. Forty-five healthy Duroc × Landrance × Yorshire piglets (weight 6.74 ± 0.17 kg; age 31 days) were randomly divided into the control group (basic diet), ANT group (basic diet + 0.12% compound antibiotics), BV1 group (basic diet + 0.1% bamboo vinegar powder), BV5 group (basic diet + 0.5% bamboo vinegar powder) and BV10 group (basic diet + 1% bamboo vinegar powder). MyD88 and CD14 expression in immune tissues was examined using real-time PCR. MyD88 expression in the control group were significantly lower than that in other groups in all tissues (p<0.05), while CD14 expression showed the opposite trend. MyD88 expression was significantly higher in the BV10 group than in other groups in lung tissue (P<0.05), significantly higher in the ANT group than in the BV1 group in the kidneys (P<0.05), significantly higher in the BV10 group than in the BV1 group in the thymus (P<0.05), and signifi- cantly higher in the BV1 group than in the BV10 group in the lymphatic tissue (P<0.05). These differences between experimental groups were not observed for the CD14 gene (P>0.05). Thus, adding bamboo vinegar powder to the basic diet of weaning piglets had immune effects similar to antibiotics and the effect was dose-dependent. Moreover, the MyD88 and CD14 genes appear to play a role in these immune effects
Go to article

This page uses 'cookies'. Learn more