Search results

Filters

  • Journals
  • Keywords
  • Date

Search results

Number of results: 4
items per page: 25 50 75
Sort by:

Abstract

The effect of the initial porosity on the material response under multi-axial stress state for S235JR steel using the Gurson-Tvergaard-Needleman (GTN) material model was examined. Three levels of initial porosity, defined by the void volume fraction f₀, were considered: zero porosity for fully dense material without pores, average and maximum porosity according to the metallurgical requirements for S235JR steel. The effect of the initial porosity on the material response was noticed for tensile elements under multi-axial stress state defined by high stress triaxiality σₘ/σe = 1.345. This effect was especially noticeable at the range of the material failure. In terms of the load-bearing capacity of the elements, the conservative results were obtained when maximum value of f₀ = 0.0024 was used for S235JR steel under multi-axial stress state, and this value is recommended to use in the calculations in order to preserve the highest safety level of the structure. In usual engineering calculations, the average porosity defined by f₀ = 0.001 may be applied for S235JR.
Go to article

Abstract

The paper discusses the influence of the initial parameters on the strength parameters of S235JR steel at low stress triaxiality. The analysis was performed using the Gurson-Tvergaard-Needlem (GTN) material model, which takes into consideration the material structure. The initial material porosity was defined as the void volume fraction f₀. The fully dense material without pores was assumed and the typical and maximum values of porosity were considered for S235JR steel in order to analyse the porosity effect. The strength analysis of S235JR steel was performed basing on the force-elongation curves obtained experimentally and during numerical simulations. Taking into consideration the results obtained, the average values of the initial void volume fraction f₀ = 0.001 for S235JR steel is recommended to use in a common engineering calculations for elements operating at low stress triaxiality. In order to obtain more conservative results, the maximum values of f₀ = 0.0024 may be used.
Go to article

Abstract

This paper deals with the prevention of failure of structural elements made of reinforced concrete. It discusses preservice cracks in the concrete decks of an underground parking facility. The cracks were assessed by analyzing their morphology. The results were used to determine the crack causes and the mechanisms of their initiation and growth. Some design solutions to prevent or reduce the occurrence of pre-service cracks are also presented.
Go to article

This page uses 'cookies'. Learn more