Science and earth science

Archives of Mining Sciences


Archives of Mining Sciences | 2019 | vol. 64 | No 2 |

Download PDF Download RIS Download Bibtex


The paper presents the results of assessment studies of the time course for technical wear in masonry buildings located in the area of mining-induced ground deformations. By using fuzzy inference system (FIS) and the “if-then” rule, corresponding language labels describing actual damage recorded in structure components were translated into scalar outputs describing the degree of damage to the building. Adopting this approach made it possible to separate damage resulting from additional effects coming from mining-induced ground deformations and the natural wear and tear of masonry structure. By using statistical analysis an exponential function for the condition of building damage and the function of natural wear and tear were developed. Both phenomena were subject to studies as a function of time regarding the technical age of building structure. The results obtained were used to develop a model for the course of technical wear of traditionally constructed buildings used within mining areas.

In the course of natural wear and tear buildings located in mining areas are additionally exposed to forced ground deformations. The increase of internal forces in structure components induced by those effects results in creating an additional stress factor and damage. The hairline cracks and cracks of building structure components take place when the intensity value of mining effects becomes higher than the component stress resistance and repeated effects result in the decrease of structure rigidity. The observations of building behaviour in mining areas show that the intensity of mining activity and the multiplicity of its effect play a substantial role in the course of technical wear of buildings. The studies show that the level of damage resulting from mining effects adds up to natural wear and tear of the building and impairs the global technical condition as compared to similar buildings used outside mining areas.

Go to article

Authors and Affiliations

Izabela Dorota Bryt-Nitarska
Download PDF Download RIS Download Bibtex


Theoretical and experimental research indicates that radial loads have a significant influence on the value of belt-on-idler rolling resistances. Computational models discussed in literature use the notion of unit rolling resistance, i.e. rolling resistance per unit length of the idler. The total value of the rolling resistance of belt on a single idler is determined by integrating unit rolling resistance with respect to the length of the contact zone between the belt and the idler. This procedure requires the knowledge of normal load distribution along the contact zone between the belt and the idler. Loads acting on the idler set have been the object of both theoretical analyses and laboratory tests. Literature mentions several models which describe the distribution of normal loads along the contact zone between the belt and the idler set (Krause & Hettler, 1974; Lodewijks, 1996; Gładysiewicz, 2003; Jennings, 2014). Numerous experimental tests (Gładysiewicz & Kisielewski, 2017; Król, 2017; Król & Zombroń, 2012) demonstrated that the resultant normal loads acting on idlers are approximate to the loads calculated in theoretical models. If the resultant normal load is known, it is possible to assume the distribution of loads acting along the contact zone between the belt and the idler. This paper analyzes various hypothetical load distributions calculated for both the center idler roll and for the side idler roll. It also presents the results of calculations of belt rolling resistances for the analyzed distributions. In addition, it presents the results of calculations with allowance for load distribution along the generating line of the idler.

Go to article

Authors and Affiliations

Lech Gładysiewicz
Martyna Konieczna-Fuławka
Download PDF Download RIS Download Bibtex


The basis for a mineral deposit delimitation is a qualitative and quantitative assessment of deposit parameters, qualifying a deposit as an economically valuable object. A conventional approach to the mineral deposit recognition and a deposit detailed parameters qualification in the initial stages of development work in the KGHM were presented in the paper. The goals of such recognition were defined, which through a gradual detailed expansion, resulting from the information inflow, allows for the construction of a more complete decision-making model. The description of the deposit parameters proposed in the article in the context of fuzzy logic, enables a presentation of imprecise statements and data, which may be a complement to a traditional description. Selected non-adjustable and adjustable s-norm and t-norm operators were demonstrated. Operators effects were tested for selected ore quality parameters (copper content and deposit thickness) by constructing adequate membership functions. In a practical application, the use of chosen fuzzy logic operators is proposed for the assessment of the qualitative parameters of copper-silver ore in the exploitation blocks for one of the mines belonging to KGHM Polish Copper S.A. The considerations have been extended by including the possibility of using compensation operators.

Go to article

Authors and Affiliations

Mariusz Krzak
Paweł Panajew
Download PDF Download RIS Download Bibtex


Rockburst is a common engineering geological hazard. In order to evaluate rockburst liability in kimberlite at an underground diamond mine, a method combining generalized regression neural networks (GRNN) and fruit fly optimization algorithm (FOA) is employed. Based on two fundamental premises of rockburst occurrence, depth, σθ, σc, σt, B1, B2, SCF, Wet are determined as indicators of rockburst, which are also input vectors of GRNN model. 132 groups of data obtained from rockburst cases from all over the world are chosen as training samples to train the GRNN model; FOA is used to seek the optimal parameter σ that generates the most accurate GRNN model. The trained GRNN model is adopted to evaluate burst liability in kimberlite pipes. The same eight rockburst indicators are acquired from lab tests, mine site and FEM model as test sample features. Evaluation results made by GRNN can be confirmed by a rockburst case at this mine. GRNN do not require any prior knowledge about the nature of the relationship between the input and output variables and avoid analyzing the mechanism of rockburst, which has a bright prospect for engineering rockburst potential evaluation.

Go to article

Authors and Affiliations

Yuanyuan Pu
Derek B. Apel
Yashar Pourrahimian
Jie Chen
Download PDF Download RIS Download Bibtex


Plastic rocks can creep, therefore the knowledge of the rheological properties of the drilled formations is an important element of the drilling process and when choosing borehole designs. These properties of plastic formations also influence the way in which appropriate drilling technology and drilling mud properties are selected. The article presents the effect of basic rheological parameters of salt from the Fore-Sudetic Monocline deposit on the drilling of boreholes in the mining area of KGHM Polska Miedź, which in the future can be used as a good drilling practice to improve the safety and efficiency of drilling.

The process of drilling in plastic rocks may be hindered. Salt is a plastic rock and in the analyzed rock mass it is deposited at a considerable depth. The caprock exerts big loads on it, beside the temperature in the deposit intensifies the rheological properties of the rock. The creep process causes that the borehole contracts, therefore the knowledge about the rheological properties of the drilled rock is very important for establishing the safe time in which the well may remain uncased. The paper is devoted to the influence of basic rheological parameters of salt bed in the Fore-Sudetic Monocline on the process of drilling of a borehole in the area of KGHM Polska Miedź as these data can be used in drilling practice in the future.

Go to article

Authors and Affiliations

Dagmara Zeljaś
Robert Rado
Iwona Kowalska-Kubsik
Tomasz Śliwa
Aleksandra Jamrozik
Download PDF Download RIS Download Bibtex


An uniaxial compression mechanical model for the roof rock-coal (RRC) composite sample was established in order to study the effects of height ratio of roof rock to coal on the structural strength of composite sample. The composite sample strengths under different height ratios were established through stress and strain analysis of the sample extracted from the interface. The coal strength near the interface is enhanced and rock strength near the interface weakened. The structural strength of composite sample is synthetically determined by the strengths of rock and coal near and far away from the interface. The area with a low strength in composite sample is destroyed firstly. An analytical model was proposed and discussed by conducting uniaxial compression tests for sandstone-coal composite samples with different height ratios, and it was found that the structural strength and elastic modulus decrease with a decrease in height ratio. The coal strengths far away from the interface determine the structural strengths of composite sample under different height ratios, which are the main control factor for the structural strength in this test. Due to its lowest strength, the rock near the interface first experienced a tensile spalling failure at the height ratio of 9:1, without causing the structural failure of composite sample. The coal failure induces the final failure of composite sample.

Go to article

Authors and Affiliations

Dawei Yin
Shaojie Chen
Xizhen Sun
Ning Jiang
Download PDF Download RIS Download Bibtex


When the distribution of water quality samples is roughly balanced, the Bayesian criterion model of water-inrush source generally can obtain relatively accurate results of water-inrush source identification. However, it is often difficult to achieve desired classification results when training samples are imbalanced. Sample imbalance is common in the source identification of mine water-inrush. Therefore, we propose a three-dimensional (3D) spatial resampling method based on rare water quality samples, which achieves the balance of water quality samples. Based on the virtual water sample points distributed by the 3D grid, the method uses the 3D Inverse Distance Weighting (IDW) method to interpolate the groundwater ion concentration of the virtual water samples to achieve oversampling of rare water samples. Case study in Gubei Coal Mine shows that the method improves overall discriminant accuracy of the Bayesian criterion model by 5.26%, from 85.26% to 90.69%. In particular, the discriminative precision of the rare class is improved from 0% to 83.33%, which indicates that the method can improve the discriminant accuracy of the rare class to large extent. In addition, this method increases the Kappa coefficient of the model by 19.92%, from 52.26% to 72.19%, increasing the degree of consistency from “general” to “significant”. Our research is of significance to enriching and improving the theory of prevention and treatment of mine water damage.

Go to article

Authors and Affiliations

Qiong Jiang
Weidong Zhao
Yong Zheng
Jiajia Wei
Chao Wei
Download PDF Download RIS Download Bibtex


To investigate the effect of different proximate index on minimum ignition temperature(MIT) of coal dust cloud, 30 types of coal specimens with different characteristics were chosen. A two-furnace automatic coal proximate analyzer was employed to determine the indexes for moisture content, ash content, volatile matter, fixed carbon and MIT of different types of coal specimens. As the calculated results showed that these indexes exhibited high correlation, a principal component analysis (PCA) was adopted to extract principal components for multiple factors affecting MIT of coal dust, and then, the effect of the indexes for each type of coal on MIT of coal dust was analyzed. Based on experimental data, support vector machine (SVM) regression model was constructed to predicate the MIT of coal dust, having a predicating error below 10%. This method can be applied in the predication of the MIT for coal dust, which is beneficial to the assessment of the risk induced by coal dust explosion (CDE).

Go to article

Authors and Affiliations

Dan Zhao
Hao Qi
Jingtao Pan
Download PDF Download RIS Download Bibtex


The cohesion and internal friction angle were characterized as quadratic functions of strain and were assumed to follow the Mohr-Coulomb criterion after the yield of peak strength. These mechanical parameters and their variations in post-peak softening stage can be exactly ascertained through the simultaneous solution based on the data points of stress-strain curves of triaxial compression tests. Taking the influence of the fault into account, the variation of strata pressure and roadway convergence with coal advancement, the temporal and spatial distribution of axial bolt load were numerically simulated by FLAC3D (Fast Lagrangian Analysis of Continua) using the ascertained post-peak mechanical parameters according to the cohesion weakening and friction strengthening model. The change mechanism of axial load of single rock bolt as abutment pressure changes was analyzed, through the comparison analysis with the results of axial bolt load by field measurements at a coal mine face. The research results show that the simulated results such as the period of main roof weighting, temporal and spatial distribution of axial bolt load are in accordance with field measurement results, so the validity of the numerical model is testified. In front of the working face, the front abutment pressure increases first and then decreases, finally tends to be stable. A corresponding correlation exists between the variation of axial bolt load and rock deformation along the bolt body. When encountered by a fault, the maximum abutment pressure, the influential range of mining disturbance and the roadway convergence between roof and floor before the working face are all increased. In the roadways along the gob, axial bolt loads on the side of the working face decrease, while the other side one increases after the collapse of the roof. As superficial surrounding rock mass is damaged, the anchoring force of rock bolts will transfer to inner rock mass for balancing the tensile load of the bolts.

Go to article

Authors and Affiliations

Hao Shi
Houquan Zhang
Lei Song
Yu Wu
Download PDF Download RIS Download Bibtex


The study aimed to apply the protection from damage to engineering facilities located near a planned underwater aggregate extraction. The analysis was conducted in compliance with mining regulations and expert opinions. The study also aimed to assess the precision and correctness of the extraction, due to economic aspects. To reach the goals, in-situ research of the mining area was conducted, with the help of an advanced bathymetric device, based on the USV methodology. The instrument – named by the author as Smart-Sonar-Boat – was especially designed for underwater surveys in open-pit aggregate mines. The study analyzed the “Dwory” open-pit mine, located in southern Poland in the city of Oświęcim. The bathymetric results obtained contributed to improving the observation of changes in the bottom during the extraction. The applied USV method allowed for conducting the reliable evaluation of the mining work.

Go to article

Authors and Affiliations

Dominik Madusiok
Download PDF Download RIS Download Bibtex


Exploitation of hard coal seams by roadway system is applied by two coal mines in southern Poland in Upper Silesian Basin. It is a secondary mining exploitation carries out in safety pillars of urban areas and shafts within mining areas of closed coal mines. Roadway system is the excavation process of gateways which are made in parallel order leaving coal pillars between them. An optimal width of coal pillar makes roadway stable and reduces subsidence of terrain surface. The article presents results of subsidence simulation caused by partial extraction using empirical and numerical methods on the example of one exploitation field of “Siltech” coal mine. The asymptotic state of subsidence was considered after mining ceased in the study area. In order to simulate of subsidence, numerical model of rock mass and model of Knothe-Budryk theory were calibrated. Simulation of vertical displacements in numerical method was carried out using RS3 program by Rocscience based on finite element method. The assumption was made that model of rock mass is transversely isotropic medium, in which panels were designed according to order of extraction of coal seams. The results of empirical and numerical methods were compared with measured values of subsidence at benchmarks along drawn lines (subsidence profiles).

Go to article

Authors and Affiliations

Piotr Polanin
Andrzej Kowalski
Andrzej Walentek
Download PDF Download RIS Download Bibtex


The economic envelopes obtained by optimization techniques in open pit mining are transformed into operational phases that are suitable for extraction through ramp designs. This process is performed with the aid of specialized design software, which is still very manual, time consuming and highly dependent on the expertise of the planner. In this paper, we introduce a new methodology based on a mathematical model to automatically propose the design of ramps from the economic envelope of a pushback, with the resulting envelope having the maximum value. The developed model was tested against a real case scenario showing reasonable and useable solutions for the planner. Using this approach, a planner can evaluate several alternatives in a reasonable time before selecting the final design.

Go to article

Authors and Affiliations

Pierre Nancel-Penard
Andrés Parra
Nelson Morales
Cristopher Díaz
Eleonora Widzyk-Capehart
Download PDF Download RIS Download Bibtex


The compactness of dimension stone blocks was previously controlled through various methods that were partially based on personal experiences, acoustic and visual observance of materials. With the development of technology, the ultrasonic pulse method is frequently used for the examination of stone test pieces and with an analysis of acquired data through the tomography method, the compactness is determined. The monolith stone blocks that are found at a site contain hidden discontinuities. The technique of data acquisition and the use of various instruments enable a good overview of the block interior. With an increased number of measurements, a suitable classification is prepared that helps reduce modification costs and increases the quality of stone blocks. The control methodology of compactness is based on the passage of longitudinal waves through the stone block without damaging the block during control. High differences in speed show irregularities in the material. With the observation system, we can prepare a tomography of the measured profiles that show us the locations of irregularities that should be observed more closely. During in situ measurements, the data for comparison with measured results are acquired. Determination of critical locations is of extreme importance before the processing of the block into smaller stone products or during the reconstruction of older stone elements or sculptures. The purpose of “in situ” measurements is to prepare a simple and fast method for the evaluation of materials compactness and for production work.

Go to article

Authors and Affiliations

Andrej Kos
Jože Kortnik
Download PDF Download RIS Download Bibtex


This work presents an innovative shaft-lining solution which, in accordance with a patent of the Republic of Poland, allows successive, periodic leaching of excess rock salt migrating to the shaft opening. As is commonly known, all workings in rock salt strata are exposed to an increased convergence of sidewalls, making it very difficult to use shafts properly. Rocks migrating towards the shaft opening cause very high stress on the shaft liner. As a result, if the lining does not show substantial deformability, it fails. Lining failure due to insufficient deformability has been extensively described in the literature. Also, throughout the history of mining construction, a number of solutions have been proposed for different types of lining-deformability enhancement. For instance, the KGHM mining corporation applied a deformable steel lining – a solution used in the mining construction of galleries – along a 155-m-long section of the SW-4 shaft with diameters of 7,5 m that passes through a rock salt strata. At KGHM, the SW-4 shaft passes through a rock salt strata along a section of 155 m, in which a deformable enclosed steel lining was made. After several years, the convergence of shaft sidewalls stabilised at a rate of 0.5 mm/day. This enormous activity of the rock mass made it necessary to reconstruct the entire shaft section after only four years. According to further predictions, it will be necessary to reconstruct this section at least four times by 2045. This paper discusses in short form the underlying weaknesses of the technology in question.

As a solution to the problems mentioned above, the authors of this work present a very simple design of a shaft lining, called the tubing-aggregate lining, which utilises the leachability of salt rock massifs. The essential part of the lining is a layer of coarse aggregate set between the salt rock sidewall and the inner column of the tubing lining. One the one hand, coarse aggregate supports the salt rock sidewall and is highly deformable due to its compressibility, but on the other hand it allows water or low saturated brine to migrate and dissolve salt rock sidewalls.

This paper presents the first stage of works on this subject. Patent No. PL 223831 B had been granted before these works commenced.

Go to article

Authors and Affiliations

Paweł Kamiński
Piotr Czaja
Download PDF Download RIS Download Bibtex


This work presents the methodology for analyzing the impact of ground vibrations induced during the drilling of gas/oil exploration wells on the surrounding constructions, as well as on humans and the natural environment. In the primary stage, this methodology is based on measurements of ground vibrations induced by a specific type of drilling system in the so-called reference site. In the next stage, ground vibrations are estimated in similar conditions to another design site, these conditions are assumed for a given drilling system, treated as a vibration source. In both sites, special seismic and geotechnical data are collected to construct numerical models for dynamic analyses. Finally, if it is required, a protection system is proposed with respect to the drilling technology and local conditions. The methodology presented has been tested on the terrain of an active natural gas mine used as the design site, and located in the southeastern part of Poland. The reference site was placed in the terrain of a working drilling system in similar conditions in the central part of Poland. Based on the results of numerical simulations, one may verify the different locations of the drilling rig in the design site with respect to the existing industrial structure. Due to the hazard from destructive ground vibrations, a certain vibroisolation system was proposed at the design site. Based on the results of numerical simulations one could rearrange the components of the drilling system in order to provide maximum security for the surrounding structures.

Go to article

Authors and Affiliations

Andrzej Truty
Zenon Pilecki
Krzysztof Stypuła
Rafał Wiśniowski
Krzysztof Kozioł
Stanisław Stryczek

Editorial office


Prof. Antoni Tajduś, AGH University of Science and Technology, Krakow

Associate Editor

Prof. Jakub Siemek, AGH University of Science and Technology, Krakow, Poland

Section Editors

Dr Katarzyna Cyran, AGH University of Science and Technology, Poland

Prof. Wacław Dziurzyński, Strata Mechanics Research Institute, Polish Academy of Sciences, Krakow, Poland

Associate prof. Jerzy Krawczyk, Strata Mechanics Research Institute, Polish Academy of Sciences

Associate prof. Krzysztof Tajduś, Strata Mechanics Research Institute, Polish Academy of Sciences, Poland

Editorial board

Prof. Piotr Czaja, AGH University of Science and Technology, Krakow, Poland

Prof. Józef Dubiński, Central Mining Institute, Katowice, Poland

Prof. Stanisław Nagy, Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie

Prof. Stanisław Prusek, Central Mining Institute, Katowice

Prof. Tadeusz Słomka, AGH University of Science and Technology, Krakow

Prof. Ryszard Tadeusiewicz, AGH University of Science and Technology, Krakow

Prof. Wacław Trutwin, Strata Mechanics Research Institute, Polish Academy of Sciences, Krakow

Prof. Andrew K. Wojtanowicz, Louisiana State University, Baton Rouge, USA

Chairman of International Advisory Board

Prof. Marek Cała, AGH University of Science and Technology, Krakow, Poland

Members of International Advisory Board

Prof. Leandro R. Alejano, Universidad de Vigo, Spain

Prof. Kashy Aminian, West Virginia University, USA

Prof. Timothy Carr, West Virginia University, USA

Prof. Eleonora Widzyk-Capehart, University of Chile, Chile

Prof. Pedro Riesgo Fernández, University of Oviedo, Spain

Prof. Mihaly Dobróka, University of Miskolc, Hungary

Prof. Sevket Durucan, Imperial College London, United Kingdom

Prof. Aidarkhan Kaltayev, al-Frabi Kazakh State University, Almaty Kazachstan

Prof. Evgeny I. Križanivskij, National Oil and Gas University of Ukraine, Ivanofrankovsk, Ukraine

Prof. Ian Lowndes, University of Nottingham, Nottingham, United Kingdom

Prof. Henryk Marcak, AGH University of Science and Technology, Krakow

Prof. Marian Marschalko, VŠB-Technical University of Ostrava,Czech Republic

Prof. Stefan Miska, University of Tulsa, Tulsa, USA

Prof. Pierpaolo Oreste, Politecnico di Torino, Italy

Prof. Durga Charan Panigrahi, Indian School of Mines, Dhanbad, India

Prof. Tadeusz Patzek, The University of Texas at Austin, USA

Prof. Lucjan Pawłowski, University of Technology, Lublin

Prof. Genadyi G. Pivnyak, National Mining University of Ukraine, Dniepropetrovsk, Ukraine

Prof. Pekka Särkkä, Helsinki University of Technology Helsinki, Finland

Prof. Anton Sroka, Strata Mechanics Research Institute of the Polish Academy of Sciences, Krakow

Prof. Stanisław Stryczek, AGH University of Science and Technology, Krakow

Prof. Vlad Ulmanu, University Petroleum-Gas of Ploiesti, Romania

Prof. Jann Rune Ursin, University of Stavanger, Norway

Prof. Jan Wachowicz, Central Mining Institute, Katowice

Prof. Yaroslavl Vasyuchkov, Russian Academy of Natural Sciences, Moscow, Russia

Prof. Isik Yilmaz, Cumhuriyet University Sivas, Turkey


Mrs. Marta Bitner

Instytut Mechaniki Górotworu PAN

ul. Reymonta 27, 30-059 Kraków

Phone: +48 12 637 62 00 w. 58


Instructions for authors

General information

It is essential for us that authors write and prepare their manuscripts according to the instructions and specifications listed below. Therefore, authors are strongly encouraged to read these instructions carefully before preparing a manuscript for submission.

Archives of Mining Sciences (AMS) is concerned with original research, new developments and case studies in all fields of mining sciences which include:

- mining technologies,

- stability of mine workings,

- rock mechanics,

- geotechnical engineering and tunnelling,

- mineral processing,

- mining and engineering geology,

- mining geophysics,

- mining geodesy

- ventilation systems,

- environmental protection in mining,

- economical aspects in mining,

- mining machine science.

Papers are welcomed on all relevant topics and especially on theoretical developments, analytical methods, numerical methods, rock testing, site investigation, and case studies.

AMS publishes research and review articles, technical notes.

Papers suitable for publication in AMS are those which:

- contain original work - the main result is not published elsewhere neither by the authors nor somebody else, and is not currently under consideration for publication in any other journal,

- are focused on the core aims and scope of the journal,

- are clearly and correctly written in English.

Authors are required to contribute to the cost of publication – publication charge 1000 PLN or 250 Euro. There is no submission charge.

Electronic submission:

All submissions must be made electronically via Editorial System


The papers should be written in English.

Length of paper

The research and review articles may not exceed 16 typewritten pages, technical notes -10 pages, format A4 including figures and tables.


The initial submission should be sent as Microsoft World (Arial, 12 points, line spacing - 1,5) or pdf file with all drawings, pictures and tables placed in the text.

After acceptance the text (in Microsoft Word), figures and tables should be sent as separate files.

Layout of the manuscript

First and last name(s) of the author(s), title of the article, abstract, keywords, methodology and introduction to the topics, results, conclusions, acknowledgements and references. The subtitles should conform to the decimal system of numbering.


The abstract should briefly summarize the most important results reported in the paper (up to 200 words).

Keywords.4-6 keywords


Formulae should be prepared with Microsoft Equation, written clearly with distinct notation of upper and lower indices and parentheses, maintaining an uniform numbering.


Tables should be prepared as separate file in Microsoft World format.


If possible, the figures should be prepared with a vector graphics software (cdr, wmf, al or dxf formats) or as eps, jpg, bmp (figures width no greater than 13.5 cm). Use Arial font for the comments on drawings in size 6-10 points. The photographs should be converted to high resolution scans in *.jpg or *.tiff format. Figures should be submitted as separate files.


A bibliography without numbering, arranged alphabetically according to the author’s last name, should include all positions referring in the text. In case of more than one article from the same year, the articles should be differentiated as follows: 1985a, 1985b, etc. The following order is required: last name and initials of all co-authors, year, title, type of publications, (journal, conference material, collection of monograph articles, unpublished texts) with the page numbers used.

Quoting references

Name(s) of the author(s) should be provided in parentheses. e.g.: (Brandt, 1993), (Crosdale & Beamish, 1994). (Dziurzynski et al., 1990) in the case of one, two or more than two authors, respectively. If the name(s) of the author(s) is included in the text, then the reference should be cited as follows e.g.: „According to Brandt (1993)...”

Example of bibliography.

Brandt, J., 1993. Neuere Erkentnisse auf dem Gebiet der Gasausbruchprognose. Glückauf Forschungshefte 54, 5, 228-233.

Crosdale, P. J., Beamish, B.B., 1994. Methane sorption studies at South Bulli (NSW) & Central (QLD) collieries using a high-pressure microbalance. 28 Newcastle Symposium on „Advances in the study of Sydney Basin”, Newcastle, NSW, Australia, 15-17 April, 118-125.

Dziurzynski, W., Trutwin W., Tracz J., 1990. Symulacja komputerowa przepływu powietrza i gazów powyrzutowych w sieci wentylacyjnej kopalni. J. Litwiniszyn (Ed.), Górotwór jako ośrodek wielofazowy; Wyrzuty skalno-gazowe. Wydawnictwo AGH, Kraków, Vol. II, 743-758.

Lama R. D., Bodziony, J., 1996. Outbursts of gas, coal and rock in underground mines. Publisher Lama & Associates, 130 Brokers Road, Mt. Pleasant, NSW 2519, Australia.

Nekrasovski, Ya. E., 1951. Razrabotka plastov podverzhennykh vnezapnym vybrosam ugla i gaza. Ugletekhizdat, Moskva.

This page uses 'cookies'. Learn more