Nauki Techniczne

Archive of Mechanical Engineering


Archive of Mechanical Engineering | 2014 | vol. 61 | No 4 |


The paper presents an analysis of factors influencing the accuracy of reproduction of geometry of the vertebrae and the intervertebral disc of the lumbar motion segment for the purpose of designing of an intervertebral disc endoprosthesis. In order to increase the functionality of the new type of endoprostheses by a better adjustment of their structure to the patient’s anatomical features, specialist software was used allowing the processing of the projections of the diagnosed structures. Recommended minimum values of projection features were determined in order to ensure an effective processing of the scanned structures as well as other factors affecting the quality of the reproduction of 3D model geometries. Also, there were generated 3D models of the L4-L5 section. For the final development of geometric models for disc and vertebrae L4 and L5 there has been used smoothing procedure by cubic free curves with the NURBS technique.

This allows accurate reproduction of the geometry for the purposes of identification of a spatial shape of the surface of the vertebrae and the vertebral disc and use of the model for designing of a new endoprosthesis, as well as conducting strength tests with the use of finite elements method.

Przejdź do artykułu

Autorzy i Afiliacje

Paweł Kroczak
Konstanty Skalski
Andrzej Nowakowski
Adrian Mróz


The article presents the effect of rotational and travelling speed and down force on the spindle torque acting on the tool in Friction Stir Processing (FSP) process. The response surface methodology (RSM) was applied to find a dependence combining the spindle torque acting on the tool with the rotational speed, travelling speed and the down force. The linear and quadratic models with interaction between parameters were used. A better fitting was achieved for a quadratic model. The studies have shown that the increase in rotational speed causes a decrease in the torque while the increase in travelling speed and down force causes an increase in the torque. The tests were conducted on casting aluminium alloy AlSi9Mg. Metallography examination has revealed that the application of FSP process results in a decrease in the porosity in the modified material and microstructure refining in the stir zone. The segregation of Si and Fe elements was evident in the parent material, while in the friction stir processed area this distribution was significantly uniform.

Przejdź do artykułu

Autorzy i Afiliacje

Marek Stanisław Węglowski


The considerations presented in this paper include a computer analysis of slide bearing wear prognosis using the solutions of recurrence equations complemented with the experimental data values. On the ground of the results obtained from analytical and computational numerical calculations, and taking into account the experimental parameters of bearing material and operation boundary conditions, the control problems of slide bearing wear surfaces have been presented. The obtained results allow us to see a connection between roughness, material properties, the amplitude of vibrations, the kind of the friction forces, the hardness of materials, the sliding speed in one side and the wear increments in succeeding time units of the exploitation process in other side.

Przejdź do artykułu

Autorzy i Afiliacje

Andrzej Miszczak
Krzysztof Wierzcholski


The paper presents a model for dynamic analysis of belt transmission. A two dimensional discrete model was assumed of a belt consisting of rigid bodies joined by translational and torsion spring-damping elements. In the model, both a contact model and a dry friction model including creep were taken into consideration for belt-pulley interaction. A model with stiffness and damping between the contacting surfaces was used to describe the contact phenomenon, whereas a simplified model of friction was assumed. Motion of the transmission is triggered under the influence of torque loads applied on the pulleys. Equations of motion of separate elements of the belt and pulleys were solved numerically by using adaptive stepsize integration methods. Calculation results are presented of the reaction forces acting on the belt as well as contact and friction forces between the belt body and pulley in the sample of the belt transmission. These were obtained under the influence of the assumed drive and resistance torques.

Przejdź do artykułu

Autorzy i Afiliacje

Krzysztof Kubas


Mechanical properties of the pipeline samples that had been cut in annular and axial directions were investigated. The methodology of modeling and calculation of the real stress-strain state was described. The stable state during in the deformation process was defined. The results of the experimental researches were used as a test variant during examination of pipe strength.

Przejdź do artykułu

Autorzy i Afiliacje

Jerzy Małachowski
Volodymyr Hutsaylyuk
Petr Yukhumets
Roman Dmitryenko
Grigorii Beliaiev
Ihor Prudkii


This paper evaluates the level of the vertical vibrations in a railway vehicle carbody generated by the track irregularities and examines the position of the critical point from the comfort perspective. The issue is reviewed on the basis of both a „rigid carbody” model and a „flexible carbody” model, which considers the first two carbody bending modes. The model errors are calculated as a function of the speed behaviour, and the results prove that the comfort performance of a railway vehicle evaluated on the „rigid carbody” model basis are overestimated compared to the ones derived from the implementation of the „flexible carbody” model, mainly at the centre of the carbody. Similarly, a correct estimation of the critical point position in the level of vibrations requires the modelling of the structural vibrations of the vehicle carbody.

Przejdź do artykułu

Autorzy i Afiliacje

Mădălina Dumitriu


It has been found that the vegetable oils are promising substitute, because of their properties are similar to those of diesel fuel and they are renewable and can be easily produced. However, drawbacks associated with crude vegetable oils are high viscosity, low volatility call for low heat rejection combustion chamber, with its significance characteristics of higher operating temperature, maximum heat release, and ability to handle lower calorific value (CV) fuel etc. Experiments were carried out to evaluate the performance of an engine consisting of different low heat rejection (LHR) combustion chambers such as ceramic coated cylinder head-LHR-1, air gap insulated piston with superni (an alloy of nickel) crown and air gap insulated liner with superni insert - LHR-2; and ceramic coated cylinder head, air gap insulated piston and air gap insulated liner - LHR-3 with normal temperature condition of crude rice bran oil (CRBO) with varied injector opening pressure. Performance parameters (brake thermal efficiency, brake specific energy consumption, exhaust gas temperature, coolant load, and volumetric efficiency) and exhaust emissions [smoke levels and oxides of nitrogen [NOx]] were determined at various values of brake mean effective pressure of the engine. Combustion characteristics [peak pressure, time of occurrence of peak pressure, maximum rate of pressure rise] were determined at full load operation of the engine.

Conventional engine (CE) showed compatible performance and LHR combustion chambers showed improved performance at recommended injection timing of 27°bTDC and recommend injector opening pressure of 190 bar with CRBO operation, when compared with CE with pure diesel operation. Peak brake thermal efficiencyincreased relatively by 7%, brake specific energy consumption at full load operation decreased relatively by 3.5%, smoke levels at full load decreased relatively by 11% and NOx levels increased relatively by 58% with LHR-3 combustion chamber with CRBO at an injector opening pressure of 190 bar when compared with pure diesel operation on CE.

Przejdź do artykułu

Autorzy i Afiliacje

M.V.S. Murali Krishna
N. Durga Prasada Rao
B. Anjeneya Prasad
P.V.K. Murthy


The present paper is devoted to the discussion and review of the non-destructive testing methods mainly based on vibration and wave propagation. In the first part, the experimental methods of actuating and analyzing the signal (vibration) are discussed. The piezoelectric elements, fiber optic sensors and Laser Scanning Doppler Vibrometer (SLDV) method are described. Effective detecting of the flaws needs very accurate theoretical models. Thus, the numerical methods, e.g. finite element, spectral element method and numerical models of the flaws in isotropic and composite materials are presented. Moreover, the detection of the damage in structures, which are subjected to cyclic or static loads, is based on the analyzing of the change in natural frequency of the whole structure, the change of internal impedance of the material and the change in guided waves propagating through the investigated structure. All these cases are characterized in detail. At the end of this paper, several applications of the structural health monitoring systems in machine design and operation are presented.

Przejdź do artykułu

Autorzy i Afiliacje

Marek Barski
Piotr Kędziora
Aleksander Muc
Paweł Romanowicz



Prof. Marek Wojtyra, Warsaw University of Technology, Poland


Editorial Board

Prof. Krzysztof Arczewski, Warsaw University of Technology, Poland

Prof. Janusz T. Cieśliński, Gdańsk University of Technology, Poland

Prof. Antonio Delgado, LSTM University of Erlangen-Nuremberg, Germany

Prof. Peter Eberhard, University of Stuttgart, Germany

Prof. Jerzy Maciej Floryan, The University of Western Ontario, Canada

Prof. Janusz Frączek, Warsaw University of Technology, Poland

Prof. Tadeusz Ryszard Fodemski, Technical University of Lodz, Poland

Prof. Zbigniew Kowalewski, Institute of Fundamental Technological Research, Polish Academy of Sciences, Poland

Prof. Zenon Mróz, Institute of Fundamental Technological Research, Polish Academy of Sciences, Poland

Prof. Andrzej J. Nowak, Silesian University of Technology, Poland

Dr. Andrzej F. Nowakowski, The University of Sheffield, United Kingdom

Prof. Jerzy Sąsiadek, Carleton University, Canada

Prof. Jacek Szumbarski, Warsaw University of Technology, Poland

Prof. Tomasz Wiśniewski, Warsaw University of Technology, Poland

Prof. Günter Wozniak, Chemnitz University of Technology, Germany


Assistant to the Editor

Małgorzata Broszkiewicz, Warsaw University of Technology, Poland


Editorial Advisory Board

Prof. Alberto Carpinteri, Politecnico di Torino, Italy

Prof. Fernand Ellyin, University of Alberta, Canada

Prof. Feng Gao, Shanghai Jiao Tong University, P.R. China

Prof. Emmanuel E. Gdoutos, Democritus University of Thrace, Greece

Prof. Gregory Glinka, University of Waterloo, Ontario, Canada

Prof. Andrius Marcinkevicius, Vilnius Gedeminas Technical University, Lithuania

Prof. Manuel José Moreira De Freitas, Instituto Superior Tecnico, Portugal

Prof. Andrzej Neimitz, Kielce University of Technology, Poland

Prof. Thierry Palin-Luc, Arts et Métiers ParisTech, Institut Carnot Arts, France

Prof. Andre Pineau, Centre des Matériaux, Ecole des Mines de Paris, France

Prof. Narayanaswami Ranganathan, LMR, Ecole Polytechnique de l'Université de Tours, France

Prof. Jan Ryś, Cracow University of Technology, Poland

Prof. Adelia Sequeira, Technical University of Lisbon, Portugal,

Prof. Józef Szala, University of Technology and Life Sciences in Bydgoszcz, Poland

Prof. Edmund Wittbrodt, Gdańsk University of Technology, Poland

Prof. Jens Wittenburg, Karlsruhe Institute of Technology, Germany

Prof. Stanisław Wojciech, University of Bielsko-Biała, Poland


Language Editor

Lech Śliwa, Institute of Physiology and Pathology of Hearing, Warsaw, Poland




Editorial Office:

Institute of Aeronautics and Applied Mechanics, Warsaw University of Technology

Nowowiejska 24, Room 132, 00-665 Warsaw, Poland

Phone:  (+48) 22 234 7448, fax: (+48) 22 628 25 87,


Instrukcje dla autorów

About the Journal
Archive of Mechanical Engineering is an international journal publishing works of wide significance, originality and relevance in most branches of mechanical engineering. The journal is peer-reviewed and is published both in electronic and printed form. Archive of Mechanical Engineering publishes original papers which have not been previously published in other journal, and are not being prepared for publication elsewhere. The publisher will not be held legally responsible should there be any claims for compensation. The journal accepts papers in English.

Archive of Mechanical Engineering is an Open Access journal. The journal does not have article processing charges (APCs) nor article submission charges.

Original high quality papers on the following topics are preferred:

  • Mechanics of Solids and Structures,
  • Fluid Dynamics,
  • Thermodynamics, Heat Transfer and Combustion,
  • Machine Design,
  • Computational Methods in Mechanical Engineering,
  • Robotics, Automation and Control,
  • Mechatronics and Micro-mechanical Systems,
  • Aeronautics and Aerospace Engineering,
  • Heat and Power Engineering.

All submissions to the AME should be made electronically via Editorial System - an online submission and peer review system at:

More detailed instructions for Authors can be found there.

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji