Applied sciences

Archive of Mechanical Engineering


Archive of Mechanical Engineering | 2009 | vol. 56 | No 1 |

Download PDF Download RIS Download Bibtex


In this paper, the semi-empirical model, formulated in the earlier paper [1], was used to control engine exhaust emission under steady-state conditions. The presented optimization method enables us to find the values of engine control parameters that lead to minimization of nitrogen oxide emission. Moreover, the presented method ensures proper engine operating parameters such as mean indicated pressure, thermal efficiency and maximum pressure in the cylinder. Results of numerical calculations are compared with experiment data. An acceptable accuracy was achieved.

Go to article

Authors and Affiliations

Krzysztof Brzozowski
Jan Nowakowski
Download PDF Download RIS Download Bibtex


The problem of optimal driving techniques during fuel economy competition is considered. The kinetic model of the record wheeled vehicle is proposed. It is regarded as a particle moving on a trace with variable slope angle. Engine characteristics are taken into account. The fuel consumption is minimized as the vehicle goes over a given distance. The problem is formulated in optimal control. The direct pseudospectral Chebyshev’s method is employed. The motion of student’s vehicle representing the Faculty of Power and Aeronautical Engineering during Shell Eco-marathon in Nogaro, France, in 2006, is used as an example.

Go to article

Authors and Affiliations

Krzysztof Rogowski
Ryszard Maroński
Download PDF Download RIS Download Bibtex


The paper presents the dynamic model of an A-frame, which is a kind of an offshore crane with a portal construction. The rigid finite element method (RFEM) has been used in discretization of the flexible substructure. An application of optimisation methods to define the drive function course of the hoisting winch is presented. The goal of the optimisation is to ensure stabilization of the load’s position. In order to achieve appropriate numerical effectiveness, the optimisation problem has been solved for a simplified model of an A-frame. Comparison of numerical results obtained for different types of objective functions and types of drive functions is presented in the paper as well.

Go to article

Authors and Affiliations

Iwona Adamiec-Wójcik
Paweł Fałat
Andrzej Maczyński
Stanisław Wojciech
Download PDF Download RIS Download Bibtex


In this paper the authors present the test carried out to obtain the uniform velocity distribution at the outlet cross section of flow fan. In the investigations the inner flat vane mounted inside of the impeller has been applied. For various angular position of the inner vane, one obtained different flow structures as well as different velocity distributions. The analysis of the obtained results is presented in form of graphs shown in 10 figures, juxtaposing flow phenomena with velocity distributions. Numerical flow simulation with the use of Flo++ program based on the Finite Volume Method was carried out.

Go to article

Authors and Affiliations

Jolanta Stacharska-Targosz
Monika Chmielowiec
Download PDF Download RIS Download Bibtex


In the paper, the author analyses a model of a ring pack motion on an oil film. The local thickness of the oil film can be compared to the height of the combined surface roughness of a cylinder liner and piston rings. Equations describing the mixed lubrication problem based on the empirical mathematical model formulated in works by Patir, Cheng [6, 7] and Greenwood, Tripp [3] have been combined [13] and used in this paper. A model of a gas flow through the labyrinth seal of piston rings has been developed [14,16]. In addition, models of ring twist effects and axial ring motion in piston grooves have been applied [15,16].

In contrast to the previous papers of the author, an experimental verification of the main parts of developed mathematical model and software has been presented. A relatively good compatibility between the experimental measurements and calculated results has been achieved.

Go to article

Authors and Affiliations

Andrzej Wolff
Download PDF Download RIS Download Bibtex


The quest for airframe weight reduction results in a careful dimensioning cross section areas of structural airframe components depending on the anticipated loading. In the case of flanges of polymeric laminate spars subjected to tension such a dimensioning can be done by means of appropriate ply dropping along the spar flanges. A method for an effective calculation of the number of plies that can be cut off at the cross-section under consideration without excessive stress concentration resulted has been presented. The method takes advantage of the Linear Fracture Mechanics tools combined with simple finite element calculations. In addition, experimental data needed can be easily obtained with the use of inexpensive specimens that are simple for manufacturing and testing.

Go to article

Authors and Affiliations

Piotr Czarnocki

Editorial office


Prof. Marek Wojtyra, Warsaw University of Technology, Poland


Editorial Board

Prof. Krzysztof Arczewski, Warsaw University of Technology, Poland

Prof. Janusz T. Cieśliński, Gdańsk University of Technology, Poland

Prof. Antonio Delgado, LSTM University of Erlangen-Nuremberg, Germany

Prof. Peter Eberhard, University of Stuttgart, Germany

Prof. Jerzy Maciej Floryan, The University of Western Ontario, Canada

Prof. Janusz Frączek, Warsaw University of Technology, Poland

Prof. Zbigniew Kowalewski, Institute of Fundamental Technological Research, Polish Academy of Sciences, Poland

Prof. Zenon Mróz, Institute of Fundamental Technological Research, Polish Academy of Sciences, Poland

Prof. Andrzej J. Nowak, Silesian University of Technology, Poland

Dr. Andrzej F. Nowakowski, The University of Sheffield, United Kingdom

Prof. Jerzy Sąsiadek, Carleton University, Canada

Prof. Jacek Szumbarski, Warsaw University of Technology, Poland

Prof. Tomasz Wiśniewski, Warsaw University of Technology, Poland

Prof. Günter Wozniak, Chemnitz University of Technology, Germany


Assistant to the Editor

Małgorzata Broszkiewicz, Warsaw University of Technology, Poland


Editorial Advisory Board

Prof. Alberto Carpinteri, Politecnico di Torino, Italy

Prof. Fernand Ellyin, University of Alberta, Canada

Prof. Feng Gao, Shanghai Jiao Tong University, P.R. China

Prof. Emmanuel E. Gdoutos, Democritus University of Thrace, Greece

Prof. Gregory Glinka, University of Waterloo, Ontario, Canada

Prof. Andrius Marcinkevicius, Vilnius Gedeminas Technical University, Lithuania

Prof. Manuel José Moreira De Freitas, Instituto Superior Tecnico, Portugal

Prof. Andrzej Neimitz, Kielce University of Technology, Poland

Prof. Thierry Palin-Luc, Arts et Métiers ParisTech, Institut Carnot Arts, France

Prof. Andre Pineau, Centre des Matériaux, Ecole des Mines de Paris, France

Prof. Narayanaswami Ranganathan, LMR, Ecole Polytechnique de l'Université de Tours, France

Prof. Jan Ryś, Cracow University of Technology, Poland

Prof. Adelia Sequeira, Technical University of Lisbon, Portugal,

Prof. Józef Szala, University of Technology and Life Sciences in Bydgoszcz, Poland

Prof. Edmund Wittbrodt, Gdańsk University of Technology, Poland

Prof. Jens Wittenburg, Karlsruhe Institute of Technology, Germany

Prof. Stanisław Wojciech, University of Bielsko-Biała, Poland


Language Editor

Lech Śliwa, Institute of Physiology and Pathology of Hearing, Warsaw, Poland




Editorial Office:

Institute of Aeronautics and Applied Mechanics, Warsaw University of Technology

Nowowiejska 24, Room 132, 00-665 Warsaw, Poland

Phone:  (+48) 22 234 7448, fax: (+48) 22 628 25 87,


Instructions for authors

About the Journal
Archive of Mechanical Engineering is an international journal publishing works of wide significance, originality and relevance in most branches of mechanical engineering. The journal is peer-reviewed and is published both in electronic and printed form. Archive of Mechanical Engineering publishes original papers which have not been previously published in other journal, and are not being prepared for publication elsewhere. The publisher will not be held legally responsible should there be any claims for compensation. The journal accepts papers in English.

Archive of Mechanical Engineering is an Open Access journal. The journal does not have article processing charges (APCs) nor article submission charges.

Original high quality papers on the following topics are preferred:

  • Mechanics of Solids and Structures,
  • Fluid Dynamics,
  • Thermodynamics, Heat Transfer and Combustion,
  • Machine Design,
  • Computational Methods in Mechanical Engineering,
  • Robotics, Automation and Control,
  • Mechatronics and Micro-mechanical Systems,
  • Aeronautics and Aerospace Engineering,
  • Heat and Power Engineering.

All submissions to the AME should be made electronically via Editorial System - an online submission and peer review system at:

More detailed instructions for Authors can be found there.

Open Access policy

Archive of Mechanical Engineering jest czasopismem wydawanym w wolnym dostępie na licencji CC BY-NC-ND 4.0.

Archive of Mechanical Engineering is an open access journal with all content available with no charge in full text version. The journal content is available under the licencse CC BY-NC-ND 4.0

This page uses 'cookies'. Learn more