Archives of Environmental Protection is the oldest Polish scientific journal of international scope that publishes articles on engineering and environmental protection. The quarterly has been published by the Institute of Environmental Engineering, Polish Academy of Sciences since 1975. The journal has served as a forum for the exchange of views and ideas among scientists. It has become part of scientific life in Poland and abroad. The quarterly publishes the results of research and scientific inquiries by best specialists hereby becoming an important pillar of science. The journal facilitates better understanding of environmental risks to humans and ecosystems and it also shows the methods for their analysis as well as trends in the search of effective solutions to minimize these risks. The journal is indexed by Thomson Reuters services (Biological Abstract, BIOSIS Previews) and has an Impact Factor 2017 of 1.120
This paper presents a general overview of 2D mathematical models for both the inorganic and the organic contaminants moving in an aquifer, taking into consideration the most important processes that occur in the ground. These processes affect, to a different extent, the concentration reduction values for the contaminants moving in a groundwater. In this analysis, the following processes have been taken into consideration: reversible physical non-linear adsorption, chemical and biological reactions (as biodegradation/biological denitrification) and radioactive decay (for moving radionuclides). Based on these 2D contaminant transport models it has been possible to calculate numerically the dimensionless concentration values with and without all the chosen processes in relation to both the chosen natural site (piezometers) and the chosen contaminants.In this paper, it has also been possible to compare all the numerically calculated concentration values to the measured concentration ones (in the chosen earlier piezometers) in relation to both the new unpublished measurement series of May 1982 and the new set of parameters used in these 2D contaminant transport models (as practical verification of these models).
The paper presents the research results for the soils sampled from the area located in the eastern part of the Chodzieskie Lakes, between the Middle Noteć River Valley and the Wełna River Valley, the right tributary of the Warta River. The research involved 7 soil samples from the surface horizons, allocated to the cultivation of various plant species (cereals and vegetable crops). The following were determined in the soil material: the content of phytoavailable forms of selected heavy metals Zn, Cu, Pb, Ni, Fe and Mn, active and available to plants phosphorus against the activity of selected oxydo-reduction and hydrolytic enzymes. The soil under the vegetable crops showed a very high richness in phosphorus available to plants, which must have been related to an intensive fertilisation. There were identified relatively low contents of the available forms of the heavy metals investigated, the fact that points to their natural content in soil, which triggered the inhibition of neither the oxydo-reduction nor hydrolytic enzymes.
The main objective of the study was to evaluate if macrophytes structure and trophic status of dam reservoir Kraśnik on a small lowland river Wyżnica are determined by phosphorous loadings. Studies were conducted seasonally in May, July and October during the years 2008-2009. Samples were taken at four sites: Site 1 - inflow of the Wyżnica River to pre-dam, Site 2 − pre-dam, Site 3 − dam reservoir and Site 4 - outflow of the Wyżnica River from dam reservoir. Physical and chemical parameters (temperature, Secchi disc depth, dissolved oxygen, pH, conductivity, total suspension, chlorophyll-a, TP and P-PO4) were measured in water samples. Together with water parameters there were estimated biomass of phytoplankton and species composition and biomass of emergent, floating-leaved and submerged macrophytes. Concentrations of TP, chlorophyll-a and Secchi disc depth were used to calculate trophic state index of Carlsson for dam reservoir and its pre-dam. Based on mean water current, mean residence time of water in dam reservoir and concentrations of TP and P-PO4 loadings (g m-2) flowing into dam reservoir with the Wyżnica River were calculated. The results showed visible negative effect of phosphorous loadings on both macrophytes composition and trophic state of the reservoir. The marked changes concerned soft vegetation. High P loadings (7.74 g m-2 of TP and 6.03 g m-2 P-PO4) during the spring of 2008 caused the disappearance of characeans meadows. In 2009, the presence of rigid hornwort (Ceratophyllum demersum L.), the species typical for eutrophic lakes was noted. This unrooted submerged plant uptakes dissolved orthophosphates directly from the water column.
Values of Carlsson index (51.4 ≤ TSI ≤ 68.2) indicate the eutrophic state of dam reservoir Kraśnik. During summer season in dam reservoir there were observed algal blooms (biomass of phytoplankton exceed 10 mg WW dm-3) and low water transparency (Secchi disc depth ranged from 0.4 to 0.65 m). During the two-year studies in dam reservoir Kraśnik a high reduction of P loadings, mostly dissolved orthophosphates was observed. Dependently on season, reduction of P-PO4 loadings ranged from 52% (July 2008) up to 91% (May 2009). The reduction of TP was lower and reached values from 15% (May 2008) to 48% (July 2009).
The phytoextraction is a process that uses living plants for cleaning up the heavy metals from contaminated soil. The cadmium and lead contamination of soils results from the application of sludge or urban composts, fertilizers, pesticides, motorization, metallurgy, and different technological processes. In industrial terrain the content of cadmium and lead in soils has increased in the recent years. This study was undertaken to evaluate the potential of Amaranthus caudatus L. ‘Atropurpureus’ and Ricinus communis L. ‘Sanguineus Apache’ for phytoextraction of cadmium and lead. Two species of ornament plants, i.e. Amaranthus caudatus L. ‘Atropurpureus’ and Ricinus communis L. ‘Sanguineus Apache’, were planted in drainless containers in a substrate artificially polluted with cadmium and lead in order to evaluate their suitability for phytoremediation of soils or substrates contaminated with these metals. Cadmium was applied at increasing rates of 0, 1, 5 and 10 mg Cd∙dm-3 in the form of cadmium sulfate 3CdSO4∙8H2O, while lead was used at 0, 100, 500 and 1000 mg Pb∙dm-3 in the form of lead acetate (CH3COO)2Pb∙3H2O. The applied doses of cadmium and lead in the experiment reflected different degrees of soil pollution. After five months of growth it was found that Amaranthus caudatus L. accumulated the biggest concentrations of cadmium and lead in leaves and the lowest concentrations in inflorescences. Ricinus communis L. accumulated the highest concentrations of cadmium in stems, while the lowest concentrations in inflorescences, whereas the biggest concentration of lead was accumulated in inflorescences and the least lead was accumulated in leaves. The biggest reduction of cadmium and lead concentrations after the completion of the experiment was found in substrates, in which Amaranthus caudatus L. was grown. The tested species of ornamental plants may be used in the phytoextraction of cadmium and lead from soils contaminated.
Predicted climate change may have negative impact on many environmental components including vegetation by increase of evapotranspiration and reduction of available water resources. Moreover, a growing global population and extensive use of water for irrigation and industry result in increasing demand for water. Facing these threats, quantitative and qualitative protection of water resources requires development of tools for drought assessment and prediction to support effective decision making and mitigate the impacts of droughts. Therefore, the Institute of Meteorology and Water Management, National Research Institute has developed and implemented a set of tools for the operational drought hazard assessment. The developed tools cover drought indices estimation, assessment of sensitivity to it formation and drought hazard prediction. They are streamlined into an operational scheme combined with data assimilation routines and products generation procedures.
A drought hazard assessment scheme was designed to be implemented into the platform of a hydrological system supporting the operational work of hydrological forecast offices. The scheme was launched to run operationally for the selected catchments of the Odra River and the Wisla River basins. The crucial resulting products are presented on the website operated by IMWM-NRI: POSUCH@ (Operational System for Providing Drought Prediction and Characteristics) (http://posucha.imgw.pl/). The paper presents the scheme and preliminary results obtained for the drought event which began in August 2011.
The photochemical degradation of the sulfadiazine (SDZ) was studied. The photochemical processes used in degradation of SDZ were UV and UV/H2O2. In the experiments hydrogen peroxide was applied at different concentrations: 10 mg/dm3 (2.94*10-4 M), 100 mg/dm3 (2.94*10-3 M), 1 g/dm3 (2.94*10-2 M) and 10 g/dm3 (2.94*10-1 M). The concentrations of SDZ during the experiment were controlled by means of HPLC. The best results of sulfadiazine degradation, the 100% removal of the compound, were achieved by photolysis using UV radiation in the presence of 100 mg H2O2/dm3 (2.94*10-3 M). The determined rate constant of sulfadiazine reaction with hydroxyl radicals kOH was equal 1.98*109 M-1s-1.
The results of experimental investigations on the removal of NOx from gases applying ozone as the oxidizing agent and the absorption of higher nitrogen oxides in the sodium hydroxide solutions are presented. The experiment was conducted using a pilot plant installation with the air flow rate 200 m3/h, being a prototype of a boiler flue gas duct and a FGD scrubber. It was shown that in the range of [NOref] = 50 ÷ 250 ppm the mechanism of NO ozonation depends on the molar ratio X = O3/NOref: for X ≤ 1.0 oxidation of NO to NO2 predominates and NO2 is poorly absorbed, for X >> 1.0 NO2 undergoes further oxidation to N2O5, which is efficiently absorbed in the scrubber. The stoichiometric molar ratio of complete conversion of NO into N2O5 is X = 1.5, in these studies to reach the effectiveness η ≥ 90% the molar ratio X was much higher (2.75).
Rare earth metals including yttrium and europium are one of several critical raw materials, the use of which ensures the development of the so-called high technology. The possibility of their recovery in Europe is limited practically only to secondary materials such as phosphogypsum and electronic waste.
The article presents the results of our research concerning the development of recovery technology of yttrium and europium from luminophore CRT used lamps. It describes the principle of separation of elements and the test results of cleaning the concentrate. It was shown that the costs of preparing the concentrate according to the proposed technology are lower than the phosphogypsum processing technology and the composition of the resulting product does not contain hazardous substances.
Uncontrolled emissions of landfill gas may contribute significantly to climate change, since its composition represents a high fraction of methane, a greenhouse gas with 100- year global warming potential 25 times that of carbon dioxide. Landfill cover could create favourable conditions for methanotrophy (microbial methane oxidation), an activity of using bacteria to oxidize methane to carbon dioxide. This paper presents a brief review of methanotrophic activities in landfill cover. Emphasis is given to the effects of cover materials, environmental conditions and landfill vegetation on the methane oxidation potential, and to their underlying effect mechanisms. Methanotrophs communities and methane oxidation kinetics are also discussed. Results from the overview suggest that well-engineered landfill cover can substantially increase its potential for reducing emissions of methane produced in landfill to the atmosphere.
The aim of this study was to assess the effects of two flocculants that are often used to overcome activated sludge bulking problems - aluminium chloride, AlCl3, and aluminium sulphate, Al2(SO4)3 - on Lecaneinermis (Rotifera, Monogononta) at three different temperatures: 8, 15 and 20°C. The mean EC50 value (effective concentration, mg dm-3) calculated for the 24 h mortality test was 0.012 mg Al3+dm-3. Next, the effects of low concentrations of the Al-salts on the population development from single individuals (parthenogenetic females) were tested in a 21-day experiment. At concentrations as low as EC4.8 and EC0.48, both Al-salts affected rotifer population negatively. However, temperature was the most pronounced factor that modified the toxicity of the Al-salts to the rotifers. On the 12th day of the experiment, there were significant interactions between temperature and the Al-salts, indicating that the chemicals were more toxic to the rotifers at 20°C than at lower temperatures. The weaker rotifers sensitivity to Al-salts (especially to AlCl3) in temperatures below 15°C, when the biggest problems associated with sludge bulking occurs,may means use both rotifers and chemicals reasonable and effective.
Editors
Editor-in-Chief
Czesława
Rosik-Dulewska
Editorial Advisory Board
Michał
Bodzek
Katarzyna Juda-Rezler
Korneliusz Miksch
Assistant Editor
Jerzy
Szdzuj
Editorial Board:
President:
Lucjan
Pawłowski
Members:
Brian
A. Bolto (Australia)
Hubert Bril (France)
Bart Van der Bruggen
(Belgium)
Zhihong Cao (China)
Pen-Chi Chiang (R.O.C.)
Wolfgang
Frenzel (Germany)
Reinhard F. Hüttl (Germany)
Piotr Kowalik
(Poland)
Joanna Kyzioł-Komosińska (Poland)
Rajmund
Michalski (Poland)
Anuska Mosquera Corral (Spain)
Takashi Nakamura
(Japan)
Józef M. Pacyna (Norway)
Wim H. Rulkens (The
Nederlands)
Corrado Sarzanini (Italy)
Hans Martin Seip (Norway)
Jan
Siuta (Poland)
Jerzy Sobota (Poland)
Joanna Surmacz-Górska (Poland)
Jadwiga
Szczepańska (Poland)
Christopher G. Uchrin (USA)
Tomasz
Winnicki (Poland)
Xiaoping Zhu (USA)
Jerzy Zwoździak (Poland)
Institute of Environmental
Engineering of the Polish Academy of Sciences
ul. M.
Skłodowskiej-Curie 34, 41-819 Zabrze, Poland
Tel.: +48-32-271 64
81 Fax: +48-32-271 74 70
e-mail: aep@ipis.zabrze.pl
Instructions for Authors
Archives of Environmental Protection is a quarterly published jointly by the Institute of Environmental Engineering of the Polish Academy of Sciences and the Committee of Environmental Engineering of the Polish Academy of Sciences. Thanks to the cooperation with outstanding scientists from all over the world we are able to provide our readers with carefully selected, most interesting and most valuable texts, presenting the latest state of research in the field of engineering and environmental protection.
Scope
The Journal principally accepts for publication original research papers covering such topics as:
- Air quality, air pollution prevention and treatment;
- Wastewater treatment and utilization;
- Waste management;
- Hydrology and water quality, water treatment;
- Soil protection and remediation;
- Transformations and transport of organic/inorganic pollutants in the environment;
- Measurement techniques used in environmental engineering and monitoring;
- Other topics directly related to environmental engineering and environment protection.
The Journal accepts also authoritative and critical reviews of the current state of knowledge in the topic directly relating to the environment protection.
If unsure whether the article is within the scope of the Journal, please send an abstract via e-mail to: aep@ipis.zabrze.pl
Preparation of the manuscript
The following are the requirements for manuscripts submitted for publication:
• The manuscript (with illustrations, tables, abstract and references) should not exceed 20 pages. In case the manuscript exceeds the required number of pages, we suggest contacting the Editor.
• The manuscript should be written in English.
• The manuscript ought to be submitted in doc or docx format in three files:
– text.doc – file containing the entire text, without title, keywords, authors names and affiliations, and without tables and figures;
– figures.doc – file containing illustrations with legends;
– tables.doc – file containing tables with legends;
• The text should be prepared in A4 format, 2.5 cm margins, 1.5 spaced, preferable using Time New Roman font with no less than 12 point. The text should be divided into sections and subsections according to general rules of manuscript editing. The proposed place of tables and figures insertion should be marked in the text.
• Legends in the figures should be concise and legible, using a proper font size so as to maintain their legibility after decreasing the font size. Please avoid using descriptions in figures, these should be used in legends or in the text of the article. Figures should be placed without the box. Legends should be placed under the figure and also without box.
• Tables should always be divided into columns. When there are many results presented in the table it should also be divided into lines.
• References should be cited in the text of an article by providing the name and publication year in brackets, e.g. (Nowak 2019). When a cited paper has two authors, both surnames connected with the word “and” should be provided, e.g. (Nowak and Kowalski 2019). When a cited paper has more than one author, surname of its first author, abbreviation ‘et al.’ and publication year should be provided, e.g. (Kowalski et al. 2019). When there are more than two publications cited in one place they should be divided with coma, e.g. (Kowalski et al. 2019, Nowak 2019, Nowak and Kowalski 2019). Internet sources should be cited like other texts - providing the name and publication year in brackets.
• References should be listed at the end of the article ordered alphabetically by surname of the first author. References should be made according to the following rules:
1. Journal:
Surnames and initials. (publication year). Title of the article, Journal Name, volume, number, pages, DOI.
For example:
Nowak, S.W., Smith, A.J. & Taylor, K.T. (2019). Title of the article, Archives of Environmental Protection, 10, 2, pp. 93–98, DOI: 10.24425/aep.2019.126330.
2. Book:
Surnames and initials. (publication year). Title, Publisher, Place and publishing year.
For example:
Kraszewski, J. & Kinecki, K. (2019). Title of book, Work & Sudies, Zabrze 2019.
3. Edited book:
Surnames and initials of text authors. (publishing year). Title of cited chapter, in: Title of the book, Surnames and initials of editor(s). (Ed.)/(Eds.). Publisher, Place, pages.
For example:
Reynor, J. & Taylor, K.T. (2019). Title of chapter, in: Title of the cited book, Kaźmierski, I. & Jasiński, C. (Eds.). Work & Studies, Zabrze, pp. 145–189.
4. Internet sources:
Surnames and initials or the name of the institution which published the text. (publication year). Title, (website address (accessed on)).
For example:
Kowalski, M. (2018). Title, (http://www.krakow.pios.gov.pl/publikacje/2009/ (03.12.2018)).
5. Patents:
Orszulik, E. (2009). Palenisko fluidalne, Patent polski: nr PL20070383311 20070910 z 16 marca 2009.
Smith, I.M. (1988). U.S. Patent No. 123,445. Washington, D.C.: U.S. Patent and Trademark Office.
6. Materials published in language other than English:
Titles of cited materials should be translated into English. Information of the language the materials were published in should be provided at the end.
For example:
Nowak, S.W. & Taylor, K.T. (2019). Title of article, Journal Name, 10, 2, pp. 93–98, DOI: 10.24425/aep.2019.126330. (in Polish)
Not more than 30 references should be cited in the original research paper.
Submission of the manuscript
By submitting the manuscript Author(s) warrant(s) that the article has not been previously published and is not under consideration by another journal. Authors claim responsibility and liability for the submitted article. The manuscripts should be submitted on-line using the Editorial System available at http://www.editorialsystem.com/aep. Authors are asked to propose at least 4 potential reviewers, including 2 from Poland, together with their e-mail addresses. The journal does not have article processing charges (APCs) nor article submission charges.
Review Process
All the submitted articles are assessed by the Editorial Board. If positively assessed by at least two editors, Editor in Chief, along with department editors selects two independent reviewers from recognized authorities in the discipline. Reviewers receive a text of the article (without personal data of Authors) and review forms applicable in the journal. In justified cases, reviewers receive additional questions regarding the article. Review process usually lasts from 1 to 4 months.
After completion of the review process Authors are informed of the results and - if both reviews are positive - asked to correct the text according to reviewers’ comments. Next, the revised work is verified by the editorial staff for factual and editorial content.
Acceptance of the manuscript
The manuscript is accepted for publication on grounds of the opinions of independent reviewers and approval of Editorial Board. Authors are informed about the decision and also asked to pay processing charges and to send completed declaration of the transfer of copyright to the editorial office.
Proofreading and Author Correction
All articles published in the Archives of Environmental Protection go through professional proofreading process. If there are too many language errors that prevent understanding of the text, the article is sent back to Authors with a request to correct the indicated fragments or - in extreme cases – to re-translate the text.
After proofreading the manuscript is prepared for publishing. The final stage of the publishing process is Author correction. Authors receive a page proof copy of the article with a request to make final corrections.
Article publication charges
The publication fee of an article in the Journal is:
• 20 EUR/80 zł per page (black and white or in gray scale),
• 30 EUR/120 zł per page (color).
Payments in Polish zlotys
Bank BGK
Account no.: 20 1130 1091 0003 9111 7820 0001
Payments in Euros
Bank BGK
Account no.: 20 1130 1091 0003 9111 7820 0001
IBAN: PL 20 1130 1091 0003 9111 7820 0001
SWIFT: GOSKPLPW
Authors are kindly requested to inform the editorial office of making payment for the publication, as well as to send all necessary data for issuing an invoice.
Archives of Environmental Protection is an open access journal with all content available with no charge in full text version. The journal content is available under the licencse CC BY-NC-SA 4.
Abstracting & Indexing
Archives of Environmental Protection is covered by the following services:
AGRICOLA (National Agricultural Library)
AGRIS
Arianta
Baidu Scholar
BazTech
CABI (over 50 subsections)
Chemical Abstracts Service (CAS) - CAplus
Chemical Abstracts Service (CAS) - SciFinder
CNKI Scholar (China National Knowledge Infrastructure)
CNPIEC
Dimensions
DOAJ (Directory of Open Access Journals)
EBSCO (relevant databases)
EBSCO Discovery Service
Engineering Village
FSTA - Food Science & Technology Abstracts
Genamics JournalSeek
GeoArchive
GeoRef
Google Scholar
Index Copernicus
Inspec
Japan Science and Technology Agency (JST)
J-Gate
Journal Citation Reports/Science Edition
JournalTOCs
KESLI-NDSL (Korean National Discovery for Science Leaders)
Microsoft Academic
Naviga (Softweco)
Primo Central (ExLibris)
ProQuest (relevant databases)
Publons
ReadCube
Reaxys
SCOPUS
Sherpa/RoMEO
Summon (Serials Solutions/ProQuest)
TDNet
TEMA Technik und Management
Ulrich's Periodicals Directory/ulrichsweb
WanFang Data
Web of Science - Biological Abstracts
Web of Science - BIOSIS Previews
Web of Science - Science Citation Index Expanded
WorldCat (OCLC)