Applied sciences

Archives of Electrical Engineering

Content

Archives of Electrical Engineering | 2013 | vol. 62 | No 4 December |

Abstract

In this paper, the results of correlations between air temperature and electricity demand by linear regression and Wavelet Coherence (WTC) approach for three different European countries are presented. The results show a very close relationship between air temperature and electricity demand for the selected power systems, however, the WTC approach presents interesting dynamics of correlations between air temperature and electricity demand at different time-frequency space and provide useful information for a more complete understanding of the related consumption.

Go to article

Abstract

Transmission of the electric power is accompanied with generation of low –frequency electromagnetic fields. Electromagnetic compatibility studies require that the fields from sources of electric power be well known. Unfortunately, many of these sources are not defined to the desired degree of accuracy. This applies e.g. to the case of the twisted-wire pair used in telephone communication; already practiced is twisting of insulated high-voltage three phase power cables and single-phase distribution cables as well. The paper presents a theoretical study of the calculation of magnetic fields in vicinity of conductors having helical structure. For the helical conductor with finite length the method is based on the Biot-Savart law. Since the lay-out of the cables is much more similar to a broken line than to strait line, in the paper the magnetic flux densities produced by helical conductor of complex geometry are also derived. The analytical formulas for calculating the 3D magnetic field can be used by a software tool to model the magnetic fields generated by e.g. twisted wires, helical coils, etc.

Go to article

Abstract

The problem of improving the voltage profile and reducing power loss in electrical networks must be solved in an optimal manner. This paper deals with comparative study of Genetic Algorithm (GA) and Differential Evolution (DE) based algorithm for the optimal allocation of multiple FACTS (Flexible AC Transmission System) devices in an interconnected power system for the economic operation as well as to enhance loadability of lines. Proper placement of FACTS devices like Static VAr Compensator (SVC), Thyristor Controlled Switched Capacitor (TCSC) and controlling reactive generations of the generators and transformer tap settings simultaneously improves the system performance greatly using the proposed approach. These GA & DE based methods are applied on standard IEEE 30 bus system. The system is reactively loaded starting from base to 200% of base load. FACTS devices are installed in the different locations of the power system and system performance is observed with and without FACTS devices. First, the locations, where the FACTS devices to be placed is determined by calculating active and reactive power flows in the lines. GA and DE based algorithm is then applied to find the amount of magnitudes of the FACTS devices. Finally the comparison between these two techniques for the placement of FACTS devices are presented.

Go to article

Abstract

Necessary and sufficient conditions for the reachability and observability of the positive electrical circuits composed of resistors, coils, condensators and voltage sources are established. Definitions of the input-decoupling zeros, output-decoupling zeros and input-output decoupling zeros of the positive electrical circuits are proposed. Some properties of the decoupling zeros of positive electrical circuits are discussed.

Go to article

Abstract

The article introduced some expressions for self- and mutual slot leakage inductance of phase windings for the mathematical model of an induction machine in the natural phase coordinate system and for dq0 model and in an arbitrary coordinate frame. Calculation of self- and mutual slot leakage inductance have been performed for threephase double-layer, delta and delta-modified winding connections. Introduced expressions may be useful in the design of windings and in the analysis of dynamic states of AC electrical machines.

Go to article

Abstract

Department of Electrical Engineering, Anna University Regional Centre, Coimbatore, India This paper presents a new approach to solve economic load dispatch (ELD) problem in thermal units with non-convex cost functions using differential evolution technique (DE). In practical ELD problem, the fuel cost function is highly non linear due to inclusion of real time constraints such as valve point loading, prohibited operating zones and network transmission losses. This makes the traditional methods fail in finding the optimum solution. The DE algorithm is an evolutionary algorithm with less stochastic approach to problem solving than classical evolutionary algorithms.DE have the potential of simple in structure, fast convergence property and quality of solution. This paper presents a combination of DE and variable neighborhood search (VNS) to improve the quality of solution and convergence speed. Differential evolution (DE) is first introduced to find the locality of the solution, and then VNS is applied to tune the solution. To validate the DE-VNS method, it is applied to four test systems with non-smooth cost functions. The effectiveness of the DE-VNS over other techniques is shown in general.

Go to article

Abstract

Topics of this article concern the study of the fundamental nature of the sonoluminescence phenomenon occurring in liquids. At the Institute of Electrical Power Engineering at Opole University of Technology the interest in that phenomenon known as secondary phenomenon of cavitation caused by ultrasound became the genesis of a research project concerning acoustic cavitation in mineral insulation oils in which a number of additional experiments performed in the laboratory aimed to determine the influence of a number of acoustic parameters on the process of the studied phenomenona. The main purpose of scientific research subject undertaken was to determine the relationship between the generation of partial discharges in high-voltage power transformer insulation systems, the issue of gas bubbles in transformer oils and the generated acoustic emission signals. It should be noted that currently in the standard approach, the phenomenon of generation of acoustic waves accompanying the occurrence of partial discharges is generally treated as a secondary phenomenon, but it can also be a source of many other related phenomena. Based on our review of the literature data on those referred subjects taken, it must be noted, that this problem has not been clearly resolved, and the description of the relationship between these phenomena is still an open question. This study doesn’t prove all in line with the objective of the study, but can be an inspiration for new research project in the future in this topic. Solution of this problem could be a step forward in the diagnostics of insulation systems for electrical Power devices based on non-invasive acoustic emission method.

Go to article

Abstract

With the continuous increase of output power ratings, multi-phase (multichannel) interleaved power factor corrector (IPFC) is gradually employed in domestic and commercial inverter air-conditioners. IPFC can solve several main problems, such as power rating increase, power device selection, input current ripple reduction as well as inductor on-board mounting. But for a multi-phase IPFC, the key problem is that it should show rapid dynamic responds and good current sharing capability, so in this paper the aim is to improve the dynamic performance and current sharing capability by means of passivity control theory. Considering the power circuit topology of a four-phase IPFC, an EL (Euler-Lagrange) mathematical model is established when the IPFC operates in continuous conduction mode (CCM). Then the passivity of the four-phase IPFC is proved, and the passivity-based controller using the state variables feedback and damping injection method is designed. The proposed control scheme, which is easy to control and needs no proportion integral controller, has strong robustness on disturbance from singlephase AC input voltage, the load as well as the parameters of the employed devices. Even in wide-range load condition, the mains current has a fast dynamic response and the average output voltage almost keep unchanged. As a result, the main functions of the four-phase IPFC are implemented including nearly unitary power factor and constant DC output voltage. Meanwhile, the four-phase IPFC acquires an excellent current sparing effect after using passivity-based controller. The above analysis has been proved with simulated results by means of MATLAB/SIMULINK and experimental results, showing that the passivity-based IPFC controller has superior performances and feasibility.

Go to article

Abstract

The article presents the results of diagnostic measurements of partial discharge signal propagation from the winding insulation in electrical machinery, which were performed using an on-line method. This paper describes the results of experiments and the acquired experience in the monitoring of winding insulation in high power and high voltage electrical machines which are important in industrial production processes. The authors show the measurement techniques employed in their research. Representative measurement results are presented along with their analysis. The authors use an SKF monitoring systems to measure: vibrations, temperature, and humidity, as major factors affecting partial discharge activity in the from winding insulation of electrical machines.

Go to article

Abstract

Static Var Compensator (SVC) is a popular FACTS device for providing reactive power support in power systems and its placement representing the location and size has significant influence on network loss, while keeping the voltage magnitudes within the acceptable range. This paper presents a Firefly algorithm based optimization strategy for placement of SVC in power systems with a view of minimizing the transmission loss besides keeping the voltage magnitude within the acceptable range. The method uses a self-adaptive scheme for tuning the parameters in the Firefly algorithm. The strategy is tested on three IEEE test systems and their results are presented to demonstrate its effectiveness.

Go to article

Abstract

This article presents the time optimal control system adopted to control double winding VCM motor. This kind of control is widely used in hard disk drive servo for head positioning. Mathematical model of double winding VCM motor is presented, and its implementation in MATLAB/Simulink is shown. The extended time optimal control algorithm is implemented on dSpace DS1104 board. The results obtained from simulation and real measurements are compared and discussed.

Go to article

Editorial office

Editor-in-Chief
Professor Andrzej Demenko, Poznan University of Technology, Poland

Deputy/ Managing Editor
Mariusz Barański, Ph.D., Poznan University of Technology, Poland
Łukasz Knypiński, Ph.D., Poznan University of Technology, Poland

Editorial Advisory Board
Chairman: Marian P. Kaźmierkowski, Warsaw, Poland
Secretary: Grzegorz Benysek, Zielona Gora, Poland

Members professors:
Antero Arkkio, Helsinki, Finland

Frede Blaabjerg,Aalborg, Denmark

Ion Boldea,Timisoara, Romania

Stanisław Bolkowski, Białystok, Poland

Herbert De Gersem,Darmstadt, Germany

Jacek Gieras, Rockford, USA

Kay Hameyer, Aachen, Germany

Mieczysław Hering,Warszawa, Poland

Marian K. Kazimierczuk, Dayton, USA

Stefan Kulig, Dortmund, Germany

David A. Lowther, Montreal, Canada

Jacek Marecki, Gdańsk, Poland

José Rodríguez Pérez,Valparaíso, Chile

Ryszard Sikora, Szczecin, Poland

Zbigniew Styczyński, Magdeburg, Germany

Jan Sykulski, Southampton, UK

 

Language Editor

Krystyna Guzek

Statistical Editor

Mariusz Barański, Poznan, Poland
Poznan University of Technology

Theme Editors

Mieczysław Hering, Warszawa, Poland
Professor at Warsaw University of Technology

Zbigniew Lubosny, Gdansk, Poland
Professor at Gdańnk University of Technology

Marian Łukaniszyn, Opole, Poland
Professor at Opole University of Technology

Marian Pasko, Gliwice, Poland
Professor at Silesian University of Technology

Stanisław Piróg, Krakow, Poland
Professor at AGH University of Science and Technology

Henryka Danuta Stryczewska, Lublin, Poland
Professor at Lublin University of Technology

Jan Sykulski, Southampton, UK
Professor at University of Southampton

Adam Szelag, Warsaw, Poland
Professor at Warsaw University of Technology

Romulad Włodek, Krakow, Poland
Professor at AGH University of Science and Technology

Technical Editor :

Typesetting in LATEX: Drukarnia Braci Grodzickich Sp.j., 05-500 Piaseczno, ul. Geodetów 47a, Poland

Contact

All contributions should be addressed to the Editor-in-Chief or the Editorial Office:

Address of the Editorial Office:

Archives of Electrical Engineering
Piotrowo 3A (Room 612X)
60-965 Poznan, Poland
tel: (48-61) 665-26-36
fax: (48-61) 665-23-81
e-mail: aee@put.poznan.pl

Website: www.aee.put.poznan.pl

Instructions for authors

ARCHIVES OF ELECTRICAL ENGINEERING (AEE) (previously Archiwum Elektrotechniki), quarterly journal of the Polish Academy of Sciences is OpenAccess, publishing original scientific articles and short communiques from all branches of Electrical Power Engineering exclusively in English. The main fields of interest are related to the theory & engineering of the components of an electrical power system: switching devices, arresters, reactors, conductors, etc. together with basic questions of their insulation, ampacity, switching capability etc.; electrical machines and transformers; modelling & calculation of circuits; electrical & magnetic fields problems; electromagnetic compatibility; control problems; power electronics; electrical power engineering; nondestructive testing & nondestructive evaluation.,

Journal Metrics:

Scoring assigned by the Polish Ministry of Science and Higher Education: 15 points

CiteScore metrics from Scopus, CiteScore 2018: 1.09

SCImago Journal Rank (SJR) 2018: 0.221

Source Normalized Impact per Paper (SNIP) 2018: 0.617

ICI Journal Master List 2017, Index Copernicus Value: 121.18

,

Manuscript submission:

All manuscripts should be submitted electronically on Editorial System.

Submission of paper to the Archives of Electrical Engineering is understood to imply that the article is original, unpublished and is not being considered for publication elsewhere. All articles will be reviewed. Since 2013, Authors wishing to use the facility of colour printing should consult the editors.,

Template:

Microsoft Word is recommended as a standard word processor to prepare the paper to the AEE journal. If you use the LaTex format, please transfer your document to Microsoft Word and then use Template AEE.
Please use Template AEE to prepare your paper. Template can be download from journal page - www.aee.put.poznan.pl,

The reviewing process:

Each paper submitted for publication in Archives of Electrical Engineering is subjected to the following review procedure:
a) the paper is reviewed by the editor in chief or guest editor for general suitability for publication in AEE
b) if it is judged suitable two reviewers are selected and a double blind peer review process takes place
c) based on the recommendations of the reviewers, the editor then decides whether the paper should be accepted in its present form, revised or rejected
d) the author(s) is(are) informed by e-mail on the results of the reviewing procedure.
The papers are published on average within 3 months after acceptance.,

Requirements for preparation of manuscripts:

The manuscripts submitted for publication should not exceed 21 000 characters (ca. 12 pages of a manuscript written on an A4 sheet in Times New Roman, 10pt font size, single line spacing and 3.8 cm margins). The manuscripts, written in UK English, should be typed using Template AEE according to the following instructions and should include: a title page with the title of a manuscript, a short title; abstract; key words, text; list of references. A DOI number as well as received and revised data will be completed by Editor. When you open Template.doc, select "Print Layout" from the "View" menu in the menu bar (View > Print Layout). Then type over sections of Template.doc or cut and paste from another document and then use markup styles (Home > Styles). For example, the style at this point in the document is "main text").
All papers submitted for publication are assessed on the basis of the mutual anonymity rule as to the names of reviewers and authors. Authors' names and affiliations should not appear in the attached text/tables/figures.
If English is not your first language, ask an English-speaking colleague to proofread your manuscript. The manuscripts that fail to meet basic standards of literacy are likely to be immediately declined or after the language assessment, sent to the authors for linguistic improvement.
The manuscripts are published on average within 3 months after their acceptance.
Do not change the font sizes or line spacing to squeeze more text into a limited number of pages. Leave some open space around your figures.,

Text:

The pages must be numbered consecutively. Articles should be divided into numbered sections, and if necessary subsections, preferably: Introduction, Material, Methods, Results, Conclusion and References. Any special characters (e.g. Greek, script, etc.) should be named in the margin where the character first occurs in the text. Names of species are to be accentuated with wavy underlining (italics). Equations should be numbered serially (1), (2), ... on the right side of the page. Footnotes should be avoided, if required, they should be used only for brief notes which do not fit well into the text. Figures and tables have to be included into the text. If table is typed on a separate page its position in the text should be marked. Abbreviations should be explained when they first appear in the text.,

Math:

Please use the Microsoft Equation 3.0 editor (comes with Microsoft Office 2007 and later versions) or the MathML editor as well as MathType editor to build an equation in your manuscript.
To insert an equation in Word, choose Insert, then Object. This will bring up a dropdown menu, where the Object option should be chosen again. Pressing it opens a popup window, where the Create New option has to be clicked. Scrolling down the window allows to find Microsoft Equation 3.0.

,

Equations:

Equations should be typed within the text, centred, and should be numbered consecutively throughout the text. Their numbers should be typed in parentheses, flush right. Equations should be referred to in text, e.g. (1), except at the beginning of a sentence: "Equation (1) is ...". All symbols appearing in equations have to be defined in the text, before or just after the equation.
If the symbols are written in Times New Roman use italic fonts. Symbols of vectors and matrices should be written in bold fonts. Do not italicize Greek fonts and mathematical symbols like e.g.: the derivative symbol d, max, min, etc. The indices of symbols that are indices themselves should be written in a clear manner.
Note that the equation is centered using a center tab stop. Please keep the same font in the formulas and text.,

Unit Symbols, Abbreviations:

Define abbreviations and acronyms the first time they are used in the text, even after they have been defined in the abstract. Abbreviations such as IEEE, SI, MKS, CGS, sc, dc, and rms do not have to be defined. Do not use abbreviations in the title or heads unless they are unavoidable.
Si units are recommended for use in formulas, drawings and tables., for example the SI unit for magnetic field strength H is A/m. Apply the center dot to separate compound units.
Do not mix complete spellings and abbreviations of units: "Wb/m2" or "webers per square meter," not "webers/m2." Spell units when they appear in text: "...a few henries…", not "...a few H…".
Use a zero before decimal points: "0.25," not ".25." Use "cm3," not "cc."
Unit Symbols, SI Prefixes as well as Abbreviations should be writing in accordance with the IEEE standard,

Tables, figures (illustrations) and captions:

The illustrations (line diagrams and photographs) should be suitable for direct reproduction. The lettering as well the details should have proportional dimensions to maintain their legibility after the usual reduction. All illustrations should be numbered consecutively (Fig. X). Tables are numbered with Arabic numerals.
All figures, figure captions, and tables in the text must be inserted into the correct places.
Figures, photos, tables or other parts of a manuscript that have previously appeared in another publication or are not the property of the authors must be properly acknowledged in the manuscript. Permission to republish these items must be obtained by the corresponding author from a person or institution holding the copyright, usually the publisher.
Authors are requested to send figures (diagrams, line drawings and photographic images) in separate computer files. JPG, PNG or TIF are the recommended file formats. Photographs, colour and greyscale figures should be at least at a resolution of 400dpi. Linear, including tables should be at a minimum of 600dpi.
All colour figures should be generated in the RGB or CMYK colour space, while greyscale images in the greyscale colour space.
When preparing your figures/graphics etc., we suggest the use of the Arial 8 point font for axis numbers and Arial 9 point font for axis names. Figures/graphics etc. can be prepared in one of two proposed ways - see Template AEE.
Tables are numbered with Arabic numerals. Use 9 point Times New Roman for the title of the table and 9 point Times New Roman for the filling of the table (9 in the case of symbols with subscripts).
AEE journal allows an author to publish color figures in e-version at no charge, and automatically convert them to grayscale for print versions. Authors wishing to use the facility of color printing should consult the editors.,

Conclusions:

A conclusion might elaborate on the importance of the work or suggest applications and extensions. Although a conclusion may review the main points of the manuscript, do not replicate the abstract as the conclusion.,

References:

References in text must be numbered consecutively by Arabic numerals placed in square brackets. Please make sure that you use full names of journals i.e. Archives of Electrical Engineering. Please ensure that all references in the Reference list are cited in the text and vice versa.
Please provide name(s) and initials of author(s), the title of the manuscript, editors (if any), the title of the journal or book, a volume number, the page range, and finally the year of publication in brackets.
You can use the rules presented on the site: IEEE standard

Examples of the ways in which references should be cited are given below:

Journal manuscript
[1] Author1 A., Author2 A., Title of paper, Title of periodical, vol. x, no. x, pp. xxx-xxx (YEAR).
example
[1] Steentjes S., von Pfingsten G., Hombitzer M., Hameyer K., Iron-loss model with consideration of minor loops applied to FE-simulations of electrical machines, IEEE Transactions on Magnetics. vol. 49, no. 7, pp. 3945-3948 (2013).
[2] Idziak P., Computer Investigation of Diagnostic Signals in Dynamic Torque of Damaged Induction Motor, Electrical Review (in Polish), to be published.
[3] Cardwell W., Finite element analysis of transient electromagnetic-thermal phenomena in a squirrel cage motor, submitted for publication in IEEE Transactions on Magnetics.

Conference manuscript
[4] Author A., Title of conference paper, Unabbreviated Name of Conf., City of Conf., Country of Conf., pp. xxx-xxx (YEAR).
example
[4] Popescu M., Staton D.A., Thermal aspects in power traction motors with permanent magnets, Proceedings of XXIII Symposium Electromagnetic Phenomena in Nonlinear Circuits, Pilsen, Czech Republic, pp. 35-36 (2016).

Book, book chapter and manual
[5] Author1 A., Author2 A.B., Title of book, Name of the publisher (YEAR).
example
[5] Zienkiewicz O., Taylor R.L., Finite Element method, McGraw-Hill Book Company (2000).

Patent
[6] Author1 A., Author2 A., Title of patent, European Patent, EP xxx xxx (YEAR).
example
[6] Piech Z., Szelag W., Elevator brake with magneto-rheological fluid, European Patent, EP 2 197 774 B1 (2011).

Thesis
[7] Author A., Title of thesis, PhD Thesis, Department, University, City of Univ. (YEAR).
example
[7] Driesen J., Coupled electromagnetic-thermal problems in electrical energy transducers, PhD Thesis, Faculty of Applied Science, K.U. Leuven, Leuven (2000).

For on electronic forms
[8] Author A., Title of article, in [Title of Conference, record as it appears on the copyright page], [copyright year] © [applicable copyright holder of the Conference Record]. doi: [DOI number].
example
[8] Kubo M., Yamamoto Y., Kondo T., Rajashekara K., Zhu B., Zero-sequence current suppression for open-end winding induction motor drive with resonant controller, in IEEE Applied Power Electronics Conference and Exposition (APEC), © APEC, 2016, doi: 10.1109/APEC.2016.7468259

Website
[9] http://www.aee.put.poznan.pl, accessed April 2010.,

Proofs:

Authors will receive proofs for correction, which should be returned promptly. All joint contributions must indicate the name and address of the authors to whom proofs should be sent.,

Fees for printing the papers in AEE:

AEE is published in Open Access, which means that all our articles on the Internet are available for readers free of charge, however it is requested that the authors pay an article-processing charge (reviewing, editing, proofreading, checking for plagiarism, distribution and so on) in order for their articles to be published and made freely available online immediately on publication.
The fee for the publication of an article in the AEE journal is 210 Euro.,

Abstracting & Indexing:

Archives of Electrical Engineering is covered by the following services:

  • Arianta
  • Baidu Scholar
  • BazTech
  • Celdes
  • CNKI Scholar (China National Knowledge Infrastucture)
  • CNPIEC
  • DOAJ
  • EBSCO - TOC Premier
  • EBSCO (relevant databases)
  • EBSCO Discovery Service
  • Elsevier - Compendex
  • Elsevier - Engineering Village
  • Elsevier - SCOPUS
  • Genamics JournalSeek
  • Google Scholar
  • ICI Journals Master List
  • Inspec
  • J-Gate
  • Naviga (Softweco)
  • POL-Index
  • Primo Central (ExLibris)
  • ProQuest - Advanced Technologies Database with Aerospace
  • ProQuest - Electronics and Communications Abstracts
  • ProQuest - Engineering Journals
  • ProQuest - High Tech Research Database
  • ProQuest - Illustrata: Technology
  • ProQuest - SciTech Journals
  • ProQuest - Technology Journals
  • ProQuest - Technology Research Database
  • SCImago (SJR)
  • Summon (Serials Solutions/ProQuest)
  • TDOne (TDNet)
  • TEMA Technik und Management
  • Thomson Reuters - Emerging Sources Citation Index
  • Ulrich's Periodicals Directory/ulrichsweb
  • WorldCat (OCLC)

Open Access policy

Archives of Electrical Engineering jest czasopismem wydawanym w wolnym dostępie na licencji CC BY-NC-ND 4.0.

Archives of Electrical Engineering is an open access journal with all content available with no charge in full text version. The journal content is available under the licencse CC BY-NC-ND 4.0.

This page uses 'cookies'. Learn more