Opis

ARCHIVES OF ELECTRICAL ENGINEERING (AEE) (previously Archiwum Elektrotechniki), quarterly journal of the Polish Academy of Sciences is OpenAccess (PAN Electronic Library, publishing original scientific articles and short communiques from all branches of Electrical Power Engineering exclusively in English. The main fields of interest are related to the theory & engineering of the components of an electrical power system: switching devices, arresters, reactors, conductors, etc. together with basic questions of their insulation, ampacity, switching capability etc.; electrical machines and transformers; modelling & calculation of circuits; electrical & magnetic fields problems; electromagnetic compatibility; control problems; power electronics; electrical power engineering; nondestructive testing & nondestructive evaluation.

Scoring assigned by the Polish Ministry of Science and Higher Education: **40
points **

CiteScore metrics from Scopus, CiteScore 2018: **1.09**

SCImago Journal Rank (SJR) 2018: **0.221**

Source Normalized Impact per Paper (SNIP) 2018: **0.617**

ICI Journal Master List 2018, Index Copernicus Value: **121.17**

ISSN

ISSN: 1427-4221, eISSN: 2300-2506

Wydawcy

Polish Academy of Sciences

Archives of Electrical Engineering | 2019 | vol. 68 | No 3
| 473–483
| DOI: 10.24425/aee.2019.129335

Słowa kluczowe:
finite element analysis
linear induction motor
Péclet number
end-effect

This paper deals with the modelling of traction linear induction motors (LIMs) for public transportation. The magnetic end effect inherent to these motors causes an asymmetry of their phase impedances. Thus, if the LIM is supplied from the three-phase symmetrical voltage, its phase currents become asymmetric. This effect must be taken into consideration when simulating the LIMs’ performance. Otherwise, when the motor phase currents are assumed to be symmetric in the simulation, the simulation results are in error. This paper investigates the LIM performance, considering the end-effect induced asymmetry of the phase currents, and presents a comparative study of the LIM performance characteristics in both the voltage and the current mode.

Archives of Electrical Engineering | 2019 | vol. 68 | No 3
| 485-496
| DOI: 10.24425/aee.2019.129336

Słowa kluczowe:
line inductance
mutual inductance
induced currents
superconducting bus-bars
particle accelerators

Quality of electric current delivered to the magnets of a particle accelerator is essential for safety and reliability of its operation. Even small discrepancies strongly affect the properties of particle beams. One of the sources of the disturbances is the appearance of induced currents caused by the electromagnetic interactions between the elements of the machine. In this paper the calculations of induced currents in by-pass lines of a SIS100 particle accelerator are presented. In order to find the values of the currents the self-inductances and mutual inductances of the by-pass lines are found. Due to the complex geometry of the line, especially of Ω-shaped dilatations, the numerical approach was employed. The calculations show that the size of induced currents increases with the distance between the cables in an individual bus-bar. The maximum discrepancy of the magnetic field in a dipole magnet is found to be 7.7 μT. The decrease of distance between the cables allows one to obtain a discrepancy of 1.2 μT.

Archives of Electrical Engineering | 2019 | vol. 68 | No 3
| 497-510
| DOI: 10.24425/aee.2019.129337

Słowa kluczowe:
electromagnetic interference
electromagnetic radiation
parameter estimation
multi-component signals
frequency response
radio frequency

Specific requirements are designed and implemented in electronic and telecommunication systems for received signals, especially high-frequency ones, to examine and control the signal radiation. However, as a serious drawback, no special requirements are considered for the transmitted signals from a subsystem. Different industries have always been struggling with electromagnetic interferences affecting their electronic and telecommunication systems and imposing significant costs. It is thus necessary to specifically investigate this problem as every device is continuously exposed to interferences. Signal processing allows for the decomposition of a signal to its different components to simulate each component. Radiation control has its specific complexities in systems, requiring necessary measures from the very beginning of the design. This study attempted to determine the highest radiation from a subsystem by estimating the radiation fields. The study goal was to investigate the level of radiations received and transmitted from the adjacent systems, respectively, and present methods for control and eliminate the existing radiations.

The proposed approach employs an algorithm which is based on multi-component signals, defect, and the radiation shield used in the subsystem. The algorithm flowchart focuses on the separation and of signal components and electromagnetic interference reduction. In this algorithm, the detection process is carried out at the bounds of each component, after which the separation process is performed in the vicinity of the different bounds. The proposed method works based on the Fourier transform of impulse functions for signal components decomposition that was employed to develop an algorithm for separation of the components of the signals input to the subsystem.

Archives of Electrical Engineering | 2019 | vol. 68 | No 3
| 511-520
| DOI: 10.24425/aee.2019.129338

Słowa kluczowe:
electrical heating
enthalpy method
experimental research
melting process
railway turnouts
thermal field
heat distribution

Maintaining railway turnout operability is crucial for ensuring railway transport safety. Electric heating of railway turnouts is a significant technical and economic issue. The classical heating is characterised by high power consumption. For this reason, research is needed to optimise the current system. This paper presents results of a numerical analysis and of experimental researches. The numerical analysis was carried out using the ANSYS software. There was conducted a numerical comparative analysis of energy loss during heating performed using two different heaters. Including the classical method and a heater thermally insulated from a rail. In the first step, heating of a working space filled with a substitute snow model was considered. The snow-covered surface area was held within the working space of the turnout. It was assumed that the snow substitute material had thermal properties approximately the same as real light snow. It was also assumed that the material is in the solid state which would not undergo a phase change. In the next step, a real snow model that included the phase change process was taken into account. The energy efficiency and heat distribution in the turnout have been analysed and compared. The experimental researches were carried out in a physical model. The results showed that the use of a contactless heater results in creating a larger area over which emitted heat affected snow in the working space. Consequently, more snow was melted around the contactless heater than the classic one. This experimental observation supported the results of the numerical analyses presented previously.

Archives of Electrical Engineering | 2019 | vol. 68 | No 3
| 521-533
| DOI: 10.24425/aee.2019.129339

Słowa kluczowe:
percutaneous RF ablation
multi-tine electrode
tumor heating techniques
Arrhenius thermal damaged model
hepatocellular carcinoma
finite element method

Percutaneous RF ablation is one of alternative treatment for non-surgical liver tumors. Ablative changes in hepatic tissue can be successfully estimated using the finite element method. The authors created a 3D model of a multi-tine applicator immersed in liver tissue, and then determined the optimal values of voltage applied to such an RF electrode, which do not exceed the therapeutic temperature range valid during thermal ablation procedure. Importantly, the simulations were carried out for the RF electric probes with 2 to 5 evenly spaced arms. Additionally, the thermal damage of hepatic tissue for multi-armed applicators working at pre-defined limit values of voltages was established based on the Arrhenius model.

Archives of Electrical Engineering | 2019 | vol. 68 | No 3
| 535-551
| DOI: 10.24425/aee.2019.129340

Słowa kluczowe:
electrical energy network
interior point method (IPM)
optimal reactive power dispatch (ORPD)
particle swarm optimization (PSO)

This paper presents the resolution of the optimal reactive power dispatch (ORPD) problem and the control of voltages in an electrical energy system by using a hybrid algorithm based on the particle swarmoptimization (PSO) method and interior point method (IPM). The IPM is based on the logarithmic barrier (LB-IPM) technique while respecting the non-linear equality and inequality constraints. The particle swarmoptimization-logarithmic barrier-interior point method (PSO-LB-IPM) is used to adjust the control variables, namely the reactive powers, the generator voltages and the load controllers of the transformers, in order to ensure convergence towards a better solution with the probability of reaching the global optimum. The proposed method was first tested and validated on a two-variable mathematical function using MATLAB as a calculation and execution tool, and then it is applied to the ORPD problem to minimize the total active losses in an electrical energy network. To validate the method a testwas carried out on the IEEE electrical energy network of 57 buses.

Archives of Electrical Engineering | 2019 | vol. 68 | No 3
| 553-564
| DOI: 10.24425/aee.2019.129341

Słowa kluczowe:
impulsive delayed nonlinear hybrid systems
global exponential Lyapunov function
Razumikhin technique

In recent years, with the rapid development of digital components, digital electronic computers, especially microprocessors, digital controllers have replaced analog controllers on many occasions. The application of digital controller makes the performance analysis of impulsive system more and more important. This paper considers global exponential stability (GES) of impulsive delayed nonlinear hybrid differential systems (IDNHDS).Through the application of the Lyapunov method and the Razumikhin technique, a series of uncomplicated and useful guiding principles have been obtained. The results of a numerical simulation are presented to demonstrate that the method is correct and effective.

Archives of Electrical Engineering | 2019 | vol. 68 | No 3
| 565–577
| DOI: 10.24425/aee.2019.129342

Słowa kluczowe:
fractional calculus
Grünwald-Letnikov fractional-order backward difference/sum
FOPID
hardware implementation

The article focuses on the fractional-order backward difference, sum, linear time-invariant equation analysis, and difficulties of the fractional calculus microcontroller implementation with regard to designing a fractional-order proportional integral derivative (FOPID) controller. In opposite to the classic proportional integral derivative (PID), the FOPID controller is defined by five independent parameters. Hence, it is more customizable and, potentially, more precise on condition that the values of fractional integration and differentiation orders are properly selected. However, a number of operations and the time required to calculate the output signal continuously increase. This can be a significant problem considering the limitations of a microcontroller, including memory size and a constant sampling time of the set-up analog-to-digital (ADC) converters. In the article, three solutions are considered, and results obtained in the experiments are presented.

Archives of Electrical Engineering | 2019 | vol. 68 | No 3
| 579-593
| DOI: 10.24425/aee.2019.129343

Słowa kluczowe:
model predictive control
long horizon
induction motor drive

This paper investigates the application of a novel Model Predictive Control structure for the drive system with an induction motor. The proposed controller has a cascade-free structure that consists of a vector of electromagnetics (torque, flux) and mechanical (speed) states of the system. The long-horizon version of the MPC is investigated in the paper. In order to reduce the computational complexity of the algorithm, an explicit version is applied. The influence of different factors (length of the control and predictive horizon, values of weights) on the performance of the drive system is investigated. The effectiveness of the proposed approach is validated by some experimental tests.

Archives of Electrical Engineering | 2019 | vol. 68 | No 3
| 595–609
| DOI: 10.24425/aee.2019.129344

Słowa kluczowe:
spinal codes
lightweight hash function
variable length output
layered pseudo-random number

A spinal code is the type of rateless code, which has been proved to be capacity- achieving over both a binary symmetric channel (BSC) and an additive white Gaussian noise (AWGN) channel. Rateless spinal codes employ a hash function as a coding kernel to generate infinite pseudo-random symbols. A good hash function can improve the perfor- mance of spinal codes. In this paper, a lightweight hash function based on sponge structure is designed. A permutation function of registers is a nonlinear function. Feedback shift registers are used to improve randomness and reduce bit error rate (BER). At the same time, a pseudo-random number generator adopts a layered and piecewise combination mode, which further encrypts signals via the layered structure, reduces the correlation between input and output values, and generates the piecewise random numbers to compensate the shortcoming of the mixed linear congruence output with fixed length. Simulation results show that the designed spinal code with the lightweight hash function outperforms the original spinal code in aspects of the BER, encoding time and randomness.

Archives of Electrical Engineering | 2019 | vol. 68 | No 3
| 611-627
| DOI: 10.24425/aee.2019.129345

Słowa kluczowe:
hybrid optimization
golden sections search
multi-verse optimization algo-rithm
maximum power point tracking
perturb and observe
photovoltaic (PV)

This research presents a comparative study for maximum power point tracking (MPPT) methodologies for a photovoltaic (PV) system. A novel hybrid algorithm golden section search assisted perturb and observe (GSS-PO) is proposed to solve the problems of the conventional PO (CPO). The aim of this new methodology is to boost the efficiency of the CPO. The new algorithm has a very low convergence time and a very high efficiency. GSS-PO is compared with the intelligent nature-inspired multi-verse optimization (MVO) algorithm by a simulation validation. The simulation study reveals that the novel GSS-PO outperforms MVO under uniform irradiance conditions and under a sudden change in irradiance.

Archives of Electrical Engineering | 2019 | vol. 68 | No 3
| 629–641
| DOI: 10.24425/aee.2019.129346

Słowa kluczowe:
control strategy
constant torque
current references
minimum copper losses
modeling
multi-phase machine

This paper presents a study of control strategies for 5-phase permanent magnet synchronous motors (PMSMs) supplied by a five-leg voltage source inverter. Based on the vectorial decomposition of the multi-phase machine, fictitious machines, magnetically decoupled, allow a more adequate control. In this paper, our study focuses on the vector control of a multi-phase machine using a linear proportional-integral-derivative (PID) current regulator in the cases of sinusoidal and trapezoidal back-electromotive force (EMF) waveforms. In order to determine currents’ references, two strategies are adopted. First one aims to minimize copper losses under constant torque, while the second one targets to increase torque for a given copper losses. These techniques are tested under a variable speed control strategy based on a proportional-integral (PI) regulator and experimentally validated.

Archives of Electrical Engineering | 2019 | vol. 68 | No 3
| 643–656
| DOI: 10.24425/aee.2019.129347

By simulating the actual working conditions of a cable, the temperature variation rule of different measuring points under different load currents was analyzed. On this basis, a three-dimensional finite element model (FEM) was established, and the difference and influence factors between the simulation temperature and the experimental measured value were discussed, then the influence of thermal conductivity on the operating temperature of the conductor layer was studied. Finally, combined with the steady-state thermal conductivity model and the experimental measured data, the relation between thermal conductivity and load current was obtained.

Archives of Electrical Engineering | 2019 | vol. 68 | No 3
| 657-666
| DOI: 10.24425/aee.2019.129348

Słowa kluczowe:
fault detection
boundary switch
distribution grid

An intelligent boundary switch is a three-phase outdoor power distribution device equipped with a controller. It is installed at the boundary point on the medium voltage overhead distribution lines. It can automatically remove the single-phase-to-ground fault and isolation phase-to-phase short-circuit fault. Firstly, the structure of an intelligent boundary switch is studied, and then the fault detection principle is also investigated. The single-phase-to-ground fault and phase-to-phase short-circuit fault are studied respectively. A method using overcurrent to judge the short-circuit fault is presented. The characteristics of the single-phase-to-ground fault on an ungrounded distribution system and compositional grounded distribution system are analyzed. Based on these characteristics, a method using zero sequence current to detect the single-phase-to-ground fault is proposed. The research results of this paper give a reference for the specification and use of intelligent boundary switches.

Archives of Electrical Engineering | 2019 | vol. 68 | No 3
| 667–675
| DOI: 10.24425/aee.2019.129349

Słowa kluczowe:
distributed parameter circuit
ignition cable
spark plug
ignition system
spark discharge

The paper analyses the possibilities of treating the ignition cable in the internal combustion engine as a distributed parameter system. It presents the experimental verification of computer simulations of signal propagation generated by ignition systems in the ignition cables, modelled by the distributed parameter system. The tests conducted to determine the wave parameters of ignition cables, as well as the results of numerical simulations and their experimental verifications, are presented. It is concluded that the modelling of the ignition cable by means of a long line gives positive results that can be used for the design of a spark plug with impedance equal to wave impedance of the ignition cable.

Archives of Electrical Engineering | 2019 | vol. 68 | No 3
| 677-695
| DOI: 10.24425/aee.2019.129350

Słowa kluczowe:
evolutionary strategy
finite element method analysis
induction machine
induction motor
loss calculation
multi-objective optimization
scaling laws

In this paper a scaling approach for the solution of 2D FE models of electric machines is proposed. This allows a geometrical and stator and rotor resistance scaling as well as a rewinding of a squirrel cage induction machine enabling an efficient numerical optimization. The 2D FEM solutions of a reference machine are calculated by a model based hybrid numeric induction machine simulation approach. In contrast to already known scaling procedures for synchronous machines the FEM solutions of the induction machine are scaled in the stator-current-rotor-frequency-plane and then transformed to the torque- speed-map. This gives the possibility to use a new time scaling factor that is necessary to keep a constant field distribution. The scaling procedure is validated by the finite element method and used in a numerical optimization process for the sizing of an electric vehicle traction drive considering the gear ratio. The results show that the scaling procedure is very accurate, computational very efficient and suitable for the use in machine design optimization.

**Editor-in-Chief**

Professor Andrzej Demenko, Poznan
University of Technology, Poland

**Deputy/ Managing Editor**

Mariusz Barański, Ph.D.,
Poznan University of Technology, Poland

Łukasz Knypiński, Ph.D.,
Poznan University of Technology, Poland

**Editorial Advisory Board**

Chairman: **Marian P.
Kaźmierkowski, **Warsaw, Poland

Secretary: **Mariusz
Jagieła**, Opole, Poland

**Members professors:****Anouar Belahcen****,**
Espoo, Finland

**Frede Blaabjerg,**Aalborg, Denmark

**Ion Boldea,**Timisoara, Romania

**Herbert De Gersem,**Darmstadt, Germany

**Jacek Gieras,** Rockford, USA

**Kay Hameyer,** Aachen, Germany

**Marian K. Kazimierczuk,** Dayton, USA

**Stefan Kulig,** Dortmund, Germany

**David A. Lowther,** Montreal, Canada

**Jacek Marecki,** Gdańsk, Poland

**Zhuoxiang Ren**, Paris, France

**José Rodríguez Pérez, **Santiago, Chile

**Ryszard Sikora,** Szczecin, Poland

**Zbigniew Styczyński,** Magdeburg, Germany

**Jan Sykulski,** Southampton, UK

**Sławomir Wiak,** Łódź, Poland

Language Editor

**Krystyna Guzek**

__Statistical Editor__

**Mariusz Barański,** Poznan, Poland

Poznan
University of Technology

__Theme Editors__

**Jerzy Barglik, Gliwice**, Poland

Professor at Silesian
University of Technology**Zbigniew Lubosny, **Gdansk,
Poland

Professor at Gdańnk University of Technology**Marian
Łukaniszyn, **Opole, Poland

Professor at Opole University
of Technology**Marian Pasko, **Gliwice, Poland

Professor
at Silesian University of Technology**Stanisław Piróg, **Krakow,
Poland

Professor at AGH University of Science and Technology**Henryka
Danuta Stryczewska, **Lublin, Poland

Professor at Lublin
University of Technology**Jan Sykulski, **Southampton,
UK

Professor at University of Southampton**Adam Szelag, **Warsaw,
Poland

Professor at Warsaw University of Technology**Romulad
Włodek, **Krakow, Poland

Professor at AGH University of
Science and Technology

__Technical Editor__ :

Typesetting in LATEX: Drukarnia Braci Grodzickich Sp.j., 05-500 Piaseczno, ul. Geodetów 47a, Poland

All contributions should be addressed to the Editor-in-Chief or the Editorial Office:

**Address of the Editorial Office:**

Archives of Electrical Engineering

Piotrowo 3A (Room 612X)

60-965 Poznan, Poland

tel: (48-61) 665-26-36

fax: (48-61) 665-23-81

e-mail: aee@put.poznan.pl

Website: www.aee.put.poznan.pl

**ARCHIVES OF ELECTRICAL ENGINEERING (AEE)** (previously Archiwum Elektrotechniki), quarterly journal of the Polish Academy of Sciences is OpenAccess, publishing original scientific articles and short communiques from all branches of Electrical Power Engineering exclusively in English. The main fields of interest are related to the theory & engineering of the components of an electrical power system: switching devices, arresters, reactors, conductors, etc. together with basic questions of their insulation, ampacity, switching capability etc.; electrical machines and transformers; modelling & calculation of circuits; electrical & magnetic fields problems; electromagnetic compatibility; control problems; power electronics; electrical power engineering; nondestructive testing & nondestructive evaluation.,

**Manuscript submission:**

All manuscripts should be submitted electronically on Editorial System.

Submission of paper to the
**Template:**

Microsoft Word is recommended as a standard word processor to prepare
the paper to the AEE journal. If you use the LaTex format, please
transfer your document to Microsoft Word and then use Template AEE.

While editing your paper, make sure that all the mathematical characters (symbols, identifiers, variables, vectors, axis marks, etc.) have the required shape, thickness, and slant kept throughout the whole article. The same appearance of a given mathematic character must be retained regardless of its place (text, equations, tables or figures).

The articles that don’t conform to the above will not be processed and published.

,
**The reviewing process:**

Each paper submitted for publication in Archives of Electrical
Engineering is subjected to the following review procedure:

a) the
paper is reviewed by the editor in chief or guest editor for general
suitability for publication in AEE

b) if it is judged suitable two
reviewers are selected and a double blind peer review process takes place

c)
based on the recommendations of the reviewers, the editor then decides
whether the paper should be accepted in its present form, revised or
rejected

d) the author(s) is(are) informed by e-mail on the results
of the reviewing procedure.

The papers are published on average
within 3 months after acceptance.

**Requirements for preparation of manuscripts: **

The manuscripts submitted for publication should not exceed 21 000 characters (ca. 12 pages of a manuscript written on an A4 sheet in Times New Roman, 10pt font size, single line spacing and 3.8 cm margins). The manuscripts, written in UK English, should be typed using Template AEE according to the following instructions and should include: a title page with the title of a manuscript, a short title; abstract; key words, text; list of references. A DOI number as well as received and revised data will be completed by Editor. When you open Template.doc, select "Print Layout" from the "View" menu in the menu bar (View > Print Layout). Then type over sections of Template.doc or cut and paste from another document and then use markup styles (Home > Styles). For example, the style at this point in the document is "main text").

All papers submitted for publication are assessed on the basis of the mutual anonymity rule as to the names of reviewers and authors. Authors' names and affiliations should not appear in the attached text/tables/figures.

If English is not your first language, ask an English-speaking colleague to proofread your manuscript. The manuscripts that fail to meet basic standards of literacy are likely to be immediately declined or after the language assessment, sent to the authors for linguistic improvement.

The manuscripts are published on average within 3 months after their acceptance.

**Do not change the font sizes or line spacing to squeeze more text
into a limited number of pages. Leave some open space around your
figures. **

The AEE journal publishes an ORCID for all authors. You will need a registered ORCID in order to submit your paper for peer review. ORCID registration is free and only takes a minute. Please note that ORCIDs will be added in the course of the author's proofreads.

,**Text:**

The pages must be numbered consecutively. Articles should be divided into numbered sections, and if necessary subsections, preferably: Introduction, Material, Methods, Results, Conclusion and References. Any special characters (e.g. Greek, script, etc.) should be named in the margin where the character first occurs in the text. Names of species are to be accentuated with wavy underlining (italics). Equations should be numbered serially (1), (2), ... on the right side of the page. Footnotes should be avoided, if required, they should be used only for brief notes which do not fit well into the text. Figures and tables have to be included into the text. If table is typed on a separate page its position in the text should be marked. Abbreviations should be explained when they first appear in the text.,

**Math:**

Please use the *Microsoft Equation 3.0* editor (comes with
Microsoft Office 2007 and later versions) or the *MathML* editor as
well as *MathType* editor to build an equation in your manuscript.

To
insert an equation in Word, choose Insert, then Object. This will bring
up a dropdown menu, where the Object option should be chosen again.
Pressing it opens a popup window, where the Create New option has to be
clicked. Scrolling down the window allows to find Microsoft Equation 3.0.

**Equations:**

Equations should be typed within the text, centred, and should be numbered consecutively throughout the text. Their numbers should be typed in parentheses, flush right. Equations should be referred to in text, e.g. (1), except at the beginning of a sentence: "Equation (1) is ...". All symbols appearing in equations have to be defined in the text, before or just after the equation.

If the symbols are written in Times New Roman use *italic fonts*. Symbols of **vectors ** and **matrices** should be written in **bold fonts**. Do not italicize Greek fonts and mathematical symbols like e.g.: the derivative symbol d, max, min, etc. The indices of symbols that are indices themselves should be written in a clear manner.

Note that the equation is centered using a center tab stop. Please keep the same font in the formulas and text.,

**Unit Symbols, Abbreviations:**

Define abbreviations and acronyms the first time they are used in the text, even after they have been defined in the abstract. Abbreviations such as IEEE, SI, MKS, CGS, sc, dc, and rms do not have to be defined. Do not use abbreviations in the title or heads unless they are unavoidable.

Si units are recommended for use in formulas, drawings and tables., for example the SI unit for magnetic field strength *H* is A/m. Apply the center dot to separate compound units.

Do not mix complete spellings and abbreviations of units: "Wb/m2" or "webers per square meter," not "webers/m2." Spell units when they appear in text: "...a few henries…", not "...a few H…".

Use a zero before decimal points: "0.25," not ".25." Use "cm3," not "cc."**Unit Symbols, SI Prefixes as well as Abbreviations should be writing in accordance with the ** IEEE standard,

**Tables, figures (illustrations) and captions:**

The illustrations (line diagrams and photographs) should be suitable for direct reproduction. The lettering as well the details should have proportional dimensions to maintain their legibility after the usual reduction. All illustrations should be numbered consecutively (Fig. X). Tables are numbered with Arabic numerals.

All figures, figure captions, and tables in the text must be inserted into the correct places.

Figures, photos, tables or other parts of a manuscript that have previously appeared in another publication or are not the property of the authors must be properly acknowledged in the manuscript. Permission to republish these items must be obtained by the corresponding author from a person or institution holding the copyright, usually the publisher.

Authors are requested to send figures (diagrams, line drawings and photographic images) in separate computer files. JPG, PNG or TIF are the recommended file formats. Photographs, colour and greyscale figures should be at least at a resolution of 400dpi. Linear, including tables should be at a minimum of 600dpi.

All colour figures should be generated in the RGB or CMYK colour space, while greyscale images in the greyscale colour space.

When preparing your figures/graphics etc., we suggest the use of the Arial 8 point font for axis numbers and Arial 9 point font for axis names. Figures/graphics etc. can be prepared in one of two proposed ways - see Template AEE.

Tables are numbered with Arabic numerals. Use 9 point Times New Roman for the title of the table and 9 point Times New Roman for the filling of the table (9 in the case of symbols with subscripts).

AEE journal allows an author to publish color figures in e-version at no charge, and automatically convert them to grayscale for print versions. Authors wishing to use the facility of color printing should consult the editors.,

**Conclusions:**

A conclusion might elaborate on the importance of the work or suggest applications and extensions. Although a conclusion may review the main points of the manuscript, do not replicate the abstract as the conclusion.,

**References:**

References in text must be numbered consecutively by Arabic numerals
placed in square brackets. Please make sure that you use full names of
journals i.e. Archives of Electrical Engineering. Please ensure that all
references in the Reference list are cited in the text and vice versa.

Please
provide name(s) and initials of author(s), the title of the manuscript,
editors (if any), the title of the journal or book, a volume number, the
page range, and finally the year of publication in brackets.**You
can use the rules presented on the site: **IEEE
standard b>__Examples of the ways in which references
should be cited are given below:__**Journal manuscript**

[1]
Author1 A., Author2 A., *Title of paper*, Title of periodical, vol.
x, no. x, pp. xxx-xxx (YEAR).*example*

[1] Steentjes S., von
Pfingsten G., Hombitzer M., Hameyer K., *Iron-loss model with
consideration of minor loops applied to FE-simulations of electrical
machines*, IEEE Transactions on Magnetics. vol. 49, no. 7, pp.
3945-3948 (2013).

[2] Idziak P., *Computer Investigation of
Diagnostic Signals in Dynamic Torque of Damaged Induction Motor*,
Electrical Review (in Polish), to be published.

[3] Cardwell W., *Finite
element analysis of transient electromagnetic-thermal phenomena in a
squirrel cage motor*, submitted for publication in IEEE Transactions
on Magnetics.**Conference manuscript**

[4] Author A., *Title
of conference paper*, Unabbreviated Name of Conf., City of Conf.,
Country of Conf., pp. xxx-xxx (YEAR).*example*

[4] Popescu
M., Staton D.A., *Thermal aspects in power traction motors with
permanent magnets*, Proceedings of XXIII Symposium Electromagnetic
Phenomena in Nonlinear Circuits, Pilsen, Czech Republic, pp. 35-36
(2016).**Book, book chapter and manual**

[5] Author1 A.,
Author2 A.B., *Title of book*, Name of the publisher (YEAR).*example*

[5]
Zienkiewicz O., Taylor R.L., *Finite Element method*, McGraw-Hill
Book Company (2000).**Patent **

[6] Author1 A., Author2
A., *Title of patent*, European Patent, EP xxx xxx (YEAR).*example*

[6]
Piech Z., Szelag W., *Elevator brake with magneto-rheological fluid*,
European Patent, EP 2 197 774 B1 (2011).**Thesis**

[7]
Author A., *Title of thesis*, PhD Thesis, Department, University,
City of Univ. (YEAR).*example*

[7] Driesen J., *Coupled
electromagnetic-thermal problems in electrical energy transducers*,
PhD Thesis, Faculty of Applied Science, K.U. Leuven, Leuven (2000).**For
on electronic forms**

[8] Author A., *Title of article*, in
[Title of Conference, record as it appears on the copyright page], ©
[applicable copyright holder of the Conference Record] (copyright year),
doi: [DOI number]. *example*

[8] Kubo M., Yamamoto Y., Kondo
T., Rajashekara K., Zhu B., *Zero-sequence current suppression for
open-end winding induction motor drive with resonant controller*,in
IEEE Applied Power Electronics Conference and Exposition (APEC), © APEC
(2016), doi: 10.1109/APEC.2016.7468259 **Website**

[9]
http://www.aee.put.poznan.pl, accessed April 2010.

**Proofs: **

Authors will receive proofs for correction, which should be returned promptly. All joint contributions must indicate the name and address of the authors to whom proofs should be sent.,

**Fees for printing the papers in Archives of Electrical
Engineering: **

AEE is published in Open Access, which means that all articles are
available on the internet to all users immediately upon publication free
of charge for the readers. Authors will be asked to a declaration that
they are ready to cover the costs of printing their article.__The
fee for the publication of an article in the AEE journal is 200 Euro.__

**Abstracting & Indexing: **

Archives of Electrical Engineering is covered by the following services:

- Arianta
- Baidu Scholar
- BazTech
- Celdes
- CNKI Scholar (China National Knowledge Infrastucture)
- CNPIEC
- DOAJ
- EBSCO - TOC Premier
- EBSCO (relevant databases)
- EBSCO Discovery Service
- Elsevier - Compendex
- Elsevier - Engineering Village
- Elsevier - SCOPUS
- Genamics JournalSeek
- Google Scholar
- ICI Journals Master List
- Inspec
- J-Gate
- Naviga (Softweco)
- POL-Index
- Primo Central (ExLibris)
- ProQuest - Advanced Technologies Database with Aerospace
- ProQuest - Electronics and Communications Abstracts
- ProQuest - Engineering Journals
- ProQuest - High Tech Research Database
- ProQuest - Illustrata: Technology
- ProQuest - SciTech Journals
- ProQuest - Technology Journals
- ProQuest - Technology Research Database
- SCImago (SJR)
- Summon (Serials Solutions/ProQuest)
- TDOne (TDNet)
- TEMA Technik und Management
- Thomson Reuters - Emerging Sources Citation Index
- Ulrich's Periodicals Directory/ulrichsweb
- WorldCat (OCLC)

Archives of Electrical Engineering jest czasopismem wydawanym w wolnym dostępie na licencji CC BY-NC-ND 4.0.

Archives of Electrical Engineering is an open access journal with all content available with no charge in full text version. The journal content is available under the licencse CC BY-NC-ND 4.0.