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Abstract We consider a four-level system with two subsystems coupled
by weak interaction. The system is in thermal equilibrium. The thermody-
namics of the system, namely internal energy, free energy, entropy and heat
capacity, are evaluated using the canonical density matrix by two methods.
First by Kronecker product method and later by treating the subsystems
separately and then adding the evaluated thermodynamic properties of each
subsystem. It is discovered that both methods yield the same result, the re-
sults obey the laws of thermodynamics and are the same as earlier obtained
results. The results also show that each level of the subsystems introduces
a new degree of freedom and increases the entropy of the entire system. We
also found that the four-level system predicts a linear relationship between
heat capacity and temperature at very low temperatures just as in metals.
Our numerical results show the same trend.

Keywords: Canonical density matrix; Kronecker product, Reduced density matrix;
Entropy

1 Introduction

The thermodynamics of a single system with four internal states have been
calculated [1]. In quantum statistics the density matrix comes in handy
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since it contains all the information about the system in consideration. Any
information needed about the system can be deduced from the density ma-
trix of the system. The density matrix thus naturally replaces the partition
function when we seek to know thermodynamics of a quantum mechanical
system. It has been established that both the density matrix method and
partition function method yield the same results [2].

The thermodynamic properties of a system are guided by existing laws
which include the laws of thermodynamics, the rule of Dulong and Petit for
heat capacity of solids, Einstein model and Debye approximation for the
heat capacity of solids, equipartition theorem and so on. The thermody-
namics of any physical system should obey these laws.

The discussions of many literatures on thermodynamics and statistical
mechanics [3–5] show that for a system in equilibrium with a heat bath in
which only the energy is exchanged, the total value of any thermodynamic
quantity for the entire system, i.e, the system and the reservoir, is equal to
the sum of the values of that thermodynamic quantity for each the subsys-
tem. Such a system is called a canonical ensemble.

In this work our aim is to calculate the thermodynamics of a four-level
system with two subsystems via the canonical density matrix method and
show that our results are in concordance with existing laws. We also aim
to show that the four level system can be used to predict the heat capacity
of metals at very low temperatures.

The paper is organized as follows. In Section 2, we take a cursory look
at the mathematical background for tensor product of matrices. In Sec-
tion 3, we present a brief review of the density matrix. In Section 4, we
highlight the thermodynamics properties we wish to calculate. In Sections
5 and 6, we calculate the thermodynamic properties of the system using
the tensor product method, and treating the subsystems separately using
the reduced densities of each subsystems respectively. In Section 7 we give
a brief conclusion.

2 Mathematical background

Numerous textbooks and papers of mathematics have discussed in details
the algebra of matrices and tensor algebra of matrices [6–11]. The tensor
product of matrices commonly known as the Kronecker product is different
from the normal row × column product. In mathematics, the Kronecker
product, denoted by ⊗, is an operation on two matrices of arbitrary size
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resulting in a block matrix. It gives the tensor product with respect to
a standard choice of basis [12]. The following definitions give an insight
into Kronecker product and Kronecker sum.

Let A ∈ �m×n, B ∈ �p×q, then the Kronecker product of matrices A
and B is defined as the matrix

A⊗B =

⎡
⎢⎣
a11B · · · a1nB
...

. . .
am1B amnB

⎤
⎥⎦ ∈ �mp×nq , (1)

where � is the set of real numbers. Equation (1) holds for both real and
complex valued matrices A and B. For example if

A =
(
a11 a12

a21 a22

)
and B =

(
b11 b12
b21 b22

)
(2)

then

A⊗B =

⎛
⎜⎜⎝

a11

[
b11 b12
b21 b22

]
a11

[
b11 b12
b21 b22

]

a21

[
b11 b12
b21 b22

]
a22

[
b11 b12
b21 b22

]
⎞
⎟⎟⎠ , (3)

therefore

A⊗B =

⎛
⎜⎜⎝

a11b11 a11b12 a12b11 a12b12
a11b21 a11b22 a12b21 a12b22
a21b11 a21b12 a22b11 a22b12
a21b21 a21b22 a22b21 a22b22

⎞
⎟⎟⎠ . (4)

It is clear that
A⊗B 	= B ⊗A .

For any

B ∈ �p×q, I2 ⊗B =
[
B 0
0 B

]
, (5)

where I2 is the 2 × 2 identity matrix. Replacing I2 by In yields a block
diagonal matrix with n copies of B along the diagonal.

We list some properties of the Kronecker product
(i) Let A ∈ �m×n, B ∈ �r×s, C ∈ �n×p and D ∈ �s×t, then

(A⊗B) (C ⊗D) = AC ⊗BD
(∈ �mr×pt

)
. (6)

(ii) For all A and B,

(A⊗B)T = AT ⊗BT , (7)
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where superscript T denotes the matrix transpose.
(iii) If A ∈ �n×n and B ∈ �m×m are symmetric, then A⊗B is symmetric.
(iv) If A and B and nonsingular, then

(A⊗B)−1 = A−1 ⊗B−1 .

(v) Let A∈ �n×n and B∈ �m×m. Then the Kronecker sum or tensor sum
of A and B denoted A⊕B, is the mn×mn matrix

A⊕B = (Im ⊗A) + (B ⊗ In , ) (8)

where I represents the identity matrix of the appropriate dimension. In
general,

A⊕B 	= B ⊕A .

(vi) Let A ∈ �n×n have eigenvalues λi, i ∈ n and let B ∈ �m×m have
eigenvalues Nj, j ∈ m, then the Kronecker sum A⊕B has mn eigenvalues

λ1 + µ1, . . . λ1 + µm, λ2 + µ1, . . . , λ2 + µm, . . . , λn + µm . . . (9)

The Kronecker sum has an important property given by the identity

eA ⊗ eB = eA⊕B . (10)

Let A ∈ �m×n and B ∈ �p×q, the partial trace TrA is a linear map from
�mp×nq to �n×m that is determined by the equation

TrB (A⊗B) = Tr (B)A (11)

for all A ∈ �n×m and B ∈ �p×q, extending to all of �mp×nq by linearity.
Similarly TrB : �mp×nq → �p×q

TrA (A⊗B) = Tr (A)B . (12)

3 Review of density matrix

The density matrix is a positive semidefinite matrix of trace one. Detailed
discussions on density matrix is available in literature [13–24]. Here we
present a brief discussion of the density matrix.

Consider an ensemble of systems with a total number of z members or
subsystems and each having a state vector

∣∣ψ(α)
〉
, α = 1, 2, 3, ...., z [25].
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Suppose each state vector of each member of the ensemble can be expanded
in a sum ∣∣∣ψ(α)

〉
=

∑
k

C
(α)
k |φk〉 , (13)

where the |φk〉 are orthonormal sets with property

〈φi | φj〉 = δij (14)

and the coefficients C(α)
k are components.

The expectation value of an observable A averaged over the ensemble of
systems is given by

〈A〉 =
1
z

z∑
α=1

〈
ψ(α)

∣∣∣ Â ∣∣∣ψ(α)
〉
, (15)

which in this cases gives

〈A〉 =
∑
k,l

(
1
z

∑
α=1

C
(α)∗
k C

(α)
l

)
〈φk| Â |φl〉 , (16)

where the symbolsˆand ∗ denote operator and complex conjugate respec-
tively.
Defining a matrix

ρ̂lk =
z∑

α=1

C
(α)
l C

(α)∗
k , (17)

thus its average is

ρ̄lk =
1
z

z∑
α=1

C
(α)
l C

(α)∗
k (18)

and let the elements of
Akl = 〈φk| Â |φl〉 (19)

be the elements of matrix A therefore using Eqs. (15) and (17) in Eq. (14)
we have

〈A〉 =
1
z

∑
k,l

ρ̂lkAkl =
1
z
Tr (ρ̂A) = Tr (ρ̄A) , (20)

where ρ̂ and A are matrices with elements ρlk and Akl in the basis of vectors
{|φk〉}. The matrix ρ̂lk is called the density matrix operator and ρ̄ is the
density matrix. Tr is the trace operator.
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For a canonical ensemble, the density matrix takes the form

ρ = e−βH , (21)

where H is the Hamiltonian of the system with kB the Boltzmann constant
and T absolute temperature. (The subscript B has nothing to do with
system B).

Now consider two quantum systems, A and B, with wavevectors
∣∣∣ψ(α)

A

〉
and

∣∣∣ψ(α)
B

〉
each in a Hilbert space HA and HB respectively. Let

∣∣∣ψ(α)
AB

〉
be

the wavevector of this bipartite composite system. The composite systems
is in the Hilbert space HA ⊗HB i.e.

∣∣∣ψ(α)
AB

〉
∈ HA ⊗HB.

Let ρA and ρB, HA and HB be the density matrices and Hamiltonians
of the systems. The density matrix of the combined system is given by [26]

ρ = ρA ⊗ ρB (22)

and the total Hamiltonian is given by

H = HA ⊕HB . (23)

The density matrix of the subsystems ρA can be retrieved from the density
matrix of entire system ρ. To do this, we take the partial trace over system
B. Using Eq. (11) and Eq. (21)

ρA = TrB (ρ) , (24)

similarly
ρB = TrA (ρ) , (25)

where ρA and ρB are called the reduced density matrix of subsystems A
and B respectively. TrB and TrA are the partial trace over B and partial
trace over A respectively. Equations (24) and (25) are possible because of
the property that the trace of the density matrix is unity.

4 Thermodynamic properties

Profound details on thermodynamic properties can be found in many text-
books [27–28]. We highlight here some thermodynamics, relevant to a canon-
ical ensemble
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(i) Internal energy or average energy 〈E〉: It is the total energy of the
system. It is the expectation value or ensemble average for the energy.
It is related to the density matrix by

〈E〉 = Tr (ρ̄H) . (26)

If a system has two subsystems A and B each with internal energies
〈EA〉 and 〈EB〉 then the total internal energy of the combined system
is

〈E〉 = 〈EA〉 + 〈EB〉 . (27)

(ii) Helmholtz free energy (F ): This is a thermodynamic potential which
measures the useful work obtainable from a closed thermodynamic
system at a constant temperature and volume. For such a system,
the negative of the Helmholtz energy gives the maximum amount of
work extractable from a canonical ensemble. In terms of the density
matrix it is given by

F = − 1
β

ln
[
Tr (ρ)

]
(28)

or
F = Tr (ρ̄H) − Tr (ρ̄S)T . (29)

Similarly for a system with subsystems A and B

F = FA + FB . (30)

(iii) Entropy: It measures the degree of disorder in a system, measures
our ignorance about a system and measures the irreversible changes
in a system. It is given by

S = −kBTr [ρ̄ ln ρ̄] , (31)

and also for a system with subsystems A and B

S = SA + SB , (32)

(iv) Specific heat capacity: It is the amount of energy needed to raise
the temperature of one kilogram of a substance by one Kelvin. It
depends on the temperature of the system. The heat capacity at
constant pressure Cp is useful to chemist whereas it is the capacity at
constant volume, Cv that is important to physicists. It is given by

Cv =
∂ 〈E〉
∂T

=
−1
kBT 2

∂

∂β

[
Tr (ρ̄H)

]
. (33)
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5 Kronecker product method

Consider a four-level system consisting of two subsystems A and B. The
subsystems are described by a simple particle Hamiltonians of the form

HA =

⎛
⎜⎜⎝

ε0 0 0 0
0 ε0 0 0
0 0 ε0 0
0 0 0 ε0

⎞
⎟⎟⎠ (34)

and

HB =

⎛
⎜⎜⎝

−ε1 0 0 0
0 ε1 0 0
0 0 ε1 0
0 0 0 −ε1

⎞
⎟⎟⎠ , (35)

where ε0 is the energy of the ground state which is constant and ε1 is the
energy of an agitated state. The system is in thermal equilibrium with
a reservoir at temperature T . Using the formula for the density matrix of
a canonical ensemble Eq. (21) we obtain the density matrix of each of the
subsystems as

ρA =

⎛
⎜⎜⎝

e−βε0 0 0 0
0 e−β∈0 0 0
0 0 e−βε0 0
0 0 0 e−β∈0

⎞
⎟⎟⎠ (36)

and

ρB =

⎛
⎜⎜⎝

eβε1 0 0 0
0 e−βε1 0 0
0 0 e−β∈1 0
0 0 0 eβε1

⎞
⎟⎟⎠ . (37)

Now the total Hamiltonian of the entire system is

H = HA ⊕HB = (I4×4 ⊗HA) + (HB ⊗ I4×4) (38)

where

I4×4 =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ .
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Using Eq. (1), we have the Hamiltonian of the entire system as the 16× 16
matrix, which we have written in block form as a 4 × 4 block matrix

H =

⎡
⎢⎢⎣

(ε1 − ε0)I4×4 0I4×4 0I4×4 0I4×4

0I4×4 (ε1 + ε0)I4×4 0I4×4 0I4×4

0I4×4 0I4×4 (ε1 + ε0)I4×4 0I4×4

0I4×4 0I4×4 0I4×4 (ε1 − ε0)I4×4

⎤
⎥⎥⎦ ,

(39)
The joint density matrix is obtained by using the identity in Eq. (10). It is
also a 16 × 16 matrix

ρ =

⎡
⎢⎢⎣
e−β(ε1−ε0)I4×4 0I4×4 0I4×4 0I4×4

0I4×4 e−β(ε1+ε0)I4×4 0I4×4 0I4×4

0I4×4 0I4×4 e−β(ε1+ε0)I4×4 0I4×4

0I4×4 0I4×4 0I4×4 e−β(ε1−ε0)I4×4

⎤
⎥⎥⎦ .

(40)
Normalizing the density matrix, we obtain the average density matrix as

ρ̄ =
1

16 cosh(βε1)

⎡
⎢⎢⎣
eβε1I4×4 0I4×4 0I4×4 0I4×4

0I4×4 e−βε1I4×4 0I4×4 0I4×4

0I4×4 0I4×4 e−βε1I4×4 0I4×4

0I4×4 0I4×4 0I4×4 eβε1I4×4

⎤
⎥⎥⎦ . (41)

The matrices in Eqs. (39)–(42) are all 16 × 16 matrices however, we have
written them in a block form. The 16 × 16 matrices can be recovered by
making use of Eqs. (3) and (4).

Using Eq. (26), we evaluate the internal energy of the system as

〈E〉 =
1

2 cosh (βε1)

[
(ε0 + ε1) e−βε1 + (ε0 − ε1) eβε1

]
= ε0 − ε1 tanh (βε1) .

(42)
This is the same result as obtained in [1]. The changes in this energy with
temperature are shown in Figs. 1 and 2 for positive and negative values of
ε1, respectively. The energy increases with temperature and has a maximum
value of ε0 irrespective of the sign of ε1.

We obtain the Helmholtz free energy from Eq. (28) as

F = − 1
β

ln
[
16e−βε0 cosh (βε1)

]
= ε0 − 1

β
ln [16 cosh (βε1)] . (43)

Equation (43) has the same form as that one obtained in [1]. The changes
of the Helmholtz free energy with temperature is depicted in Fig. 3. It
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Figure 1. Internal energy < E > /ε0 versus temperature T for different positive values
of ε1.

Figure 2. Internal energy < E > /ε0 versus temperature T for different negative values
of ε1.

increases negatively and indefinitely with temperature, hence it meets up
with the expectations of thermodynamics. Like the internal energy, it is
not affected by the sign of ε1.
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Figure 3. Free energy versus temperature T for different values of ε1.

From Eq. (31), the entropy is calculated as

S = − kB
2 cosh(βε1)

[
(βε1 − ln [16 cosh βε1]) eβε1 (βε1 + ln [16 cos (βε1)]) e−βε1

]
= kB ln [16 cosh βε1] − ε1

T tanh (βε1) .
(44)

The entropy also has the same form as that obtained in [1]. Like the free
energy it has increased by kB ln 4. The entropy fulfills both the second and
third laws of thermodynamics viz ∆S ≥ 0 and T → 0, S → 0 respec-
tively. The entropy changes with temperature are shown in Fig. 4. It has a
maximum value of approximately 2.773 kB .

Figure 4. Entropy S versus temperature T for different values of ε1.
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Finally, the specific heat capacity is evaluated as

Cv = − 1
kBT 2

∂

∂β
[ε0 − ε1 tan βε1] = kB

(
ε1
kBT

)2

sech2 (βε1) . (45)

The plot of Eq. (45) is as displayed in Fig. 5. As ε1 increases Cv increases
and it is independent of the sign of ε1. It also goes to zero as T → 0 as
predicted by thermodynamics. The Cv can be written as an infinite series

Cv = kB

(
ε1
kBT

)2 ∞∑
n=0

[
(2n+ 1) e−2(2n+1)βε1 − 2ne−4nβε1

]
. (46)

The typical plots of the heat capacity versus temperature are shown in
Fig. 6 and 7 for the first few values of n for different values of ε1. It could
be noticed that Cv increases with increasing ε1.

Figure 5. Heat capacity Cv versus temperature T for different values of ε1.

6 Treating the subsystems separately

We now treat each subsystem separately and evaluate their thermodynamics
individually. The density matrix of each subsystem is the reduced density
matrix which can be obtained from the joint density matrix ρ in Eq. (40)
by partial trace method. Using Eqs. (11) and Eq. (12) we obtain density
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Figure 6. Heat capacity Cv versus temperature T for different values of n with ε1 = 1.

Figure 7. Heat capacity Cv versus temperature T for different values of n with ε1 = 2.

matrices as

ρ̂A =

⎛
⎜⎜⎝

e−βε0 0 0 0
0 e−βε0 0 0
0 0 e−βε0 0
0 0 0 e−βε0

⎞
⎟⎟⎠ , (47)

ρ̂B =

⎛
⎜⎜⎝

eβε1 0 0 0
0 e−βε1 0 0
0 0 e−βε1 0
0 0 0 eβε1

⎞
⎟⎟⎠ , (48)
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and normalizing them

ρ̄A =
1
4

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ , (49)

ρ̄B =
1

4 cosh (βε1)

⎛
⎜⎜⎝

eβε1 0 0 0
0 e−βε1 0 0
0 0 e−βε1 0
0 0 0 eβε1

⎞
⎟⎟⎠ . (50)

The internal energy of subsystem A is

〈EA〉 = Tr (ρ̄AHA) = ε0 , (51)

and the internal energy of B is

〈EB〉 = Tr (ρ̄BHB) =
1

2 cosh (βε1)

[
ε1e

−βε1 − ε1e
βε1

]
= −ε1 tanh (βε1) ,

(52)
therefore the total internal energy of system is

〈E〉 = 〈EA〉 + 〈EB〉 = ε0 − ε1 tanh (βε1) . (53)

The free energy of subsystem A is

FA = − 1
β

ln [Tr (ρ̂A)] = − 1
β

ln
[
4e−βε0

]
= ε0 − ln 4

β
, (54)

while the free energy of B is

FB = − 1
β

ln [Tr (ρ̂B)] = − 1
β

ln [4 cosh βε1] , (55)

thus the total free energy of the system is

F = FA + FB = ε0 − ln 4
β

− 1
β

ln [4 cosh (βε1)] . (56)

For entropy of subsystem A and B we respectively get

SA = kB ln 4 (57)
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SB = −kB
4 cosh(βε1)

[
βε1

(
eβε1 − e−βε1 − ln [4 cosh (βε1)] eβε1 + e−βε1

)]
= kB ln [4 cosh (βε1)] − ε1

T tanhβε1
(58)

and therefore

S = SA + SB = kB ln 4 + kB ln [4 cosh (βε1)] − ε1
T tanh (βε1)

= kB ln [16 cosh (β ∈1)] − ε1
T tanh (βε1) .

(59)

For heat capacity, using (32), we obtain

CvA = 0 , (60)

CvB = kB

(
ε1
kBT

)2

sech2 (βε1) , (61)

Cv = CvB + CvA = kB

(
ε1
kBT

)2

sech2 (βε1) . (62)

The heat capacity is independent of ε0, this is expected since ε0 is the ground
state energy and according to thermodynamics Cv → 0 at ground state.

The results, Eqs. (53), (56), (59) and (62), are the same as the corre-
sponding results of Eqs. (42), (43), (44) and (45) for the Kronecker product
method. This proofs the equivalence of the methods.

We can write the heat capacity in exponential forms

Cv = 4kB

(
ε1
kBT

)2 e2βε1

(e2βε1 + 1)2
= ε1

df(ε1)
dT

, (63)

where f(ε1) = 1
e2βε1+1

is the Fermi-Dirac statistics. This means that the
particles in the four-level system are fermions and therefore obey the Fermi-
Dirac statistics. At very low temperatures the heat capacity in Eq. (63)
can be written as [29]

Cv =

∞∫
0

dε1(ε1 − ε0)
df(ε1)
dT

D(ε1) , (64)

where D(ε1) is the density of states of the system.
For very low temperatures kBT < ε0, df

dT is only large when ε1 is close
to ε0 [29]. Thus it is good to evaluate the density of states at ε0 so that
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D(ε1) = D(ε0) at low temperatures. Hence from Eq. (64), the heat capacity
of the four-level system at low temperatures is

Cv = k2
BTD(ε0)

∞∫
0

x2ex

(ex + 1)2
dx , (65)

where x = β(ε1−ε0). The lower limit is chosen as −∞ because ex is already
negligible at −βε0 when ε1 = 0. Integral in Eq. (65) is a standard integral
and its value equal to π2/3 can be obtained from standard tables [29,30].
Hence the heat capacity at low temperature is

Cv =
1
3
π2k2

BTD(ε0) . (66)

If the system contains N free electrons in three-dimensions [29], then

D(ε0) =
3N
2ε0

, (67)

hence, the heat capacity becomes

Cv =
π2k2

B

2ε0
T . (68)

If we set ε0 = εF , where εF is the Fermi energy, we get the same result as
Eq. (16) in [29] (page 136).

Equations (66) and (68) predict a linear relationship between heat ca-
pacity of the four-level system and temperature at very low temperature.
This is known to be so for metals. This result is also given by the free gas
electron model. This linear relationship between Cv and T at low tempera-
tures can be seen in Figs. 6 and 7 between 0 ≤ T ≤ 1. Thus, the four-level
can be used to model the heat capacity of metals for electronic contribution
along with the Debye approximation for phonon contribution.

7 Conclusion

We have evaluated the thermodynamics of a four-level system with two sub-
systems and our results conform to that of [1]. We see that the entropy has
increased. This is due to the fact that each of the states of the subsystems
has introduced a new degree of freedom, when separated, thereby increasing
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the disorder of the system. The numerical results also show that each of
the thermodynamics does not depend on the sign of ε1. We also found that
that each of the thermodynamics obeys all the existing laws guiding it even
at extreme values of temperature. We also found that the four-level system
is applicable to metals since it gives a linear relationship with temperature
at very low temperatures. It gives the orbital electron contribution to the
heat capacity.
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