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Stability state evaluation of composite three-layered
annular plates with asymmetrical damage

The paper presents the response of a three-layered annular plate with damaged
laminated facings to the loads acting in their planes. The presented problem concerns
the analysis of the combination of global plate failure in the form of buckling with
the local micro defects, like fibre or matrix cracks, located in the laminas. The plate
structure consists of thin laminated, fibre-reinforced composite facings and a thicker
foam core. The matrix and fibre cracks of facings laminas can be transversally sym-
metrically or asymmetrically located in plate structure. Critical static and dynamic
stability analyses were carried out solving the problem numerically and analytically.
The numerical results show the static and dynamic stability state of the composite
plate with different combinations of damages. The final results are compared with
those for undamaged structure of the plate and treated as quasi-isotropic ones. The
analysed problem makes it possible to evaluate the use of the non-ideal composite
plate structure in practical applications.

1. Introduction

The propagation process of various damages during the use of construction
elements, especially made of laminated composites is difficult to predict. One
of the situations, in which the element is particularly exposed to defects, is the
case of rapid change in structure form associated with the buckling phenomenon.
The loss of plate stability is a form of the global failure of element. Connecting
this form of plate failure with the possible local defects, like micro cracks, is a
complex problem of important practical meaning. The cracks of fibres or matrices
of fibrous composite are one of the basic forms of failure. However, a partial or
even total degradation of composite structure in the above form does not necessarily
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eliminates it from further work, particularly if the composite element is a part of
a layered structure, like, for example, the popular three-layered, sandwich one.
Composite laminates, owing to their material, mechanical and strength properties
are used in various engineering fields, like: aircraft industry, automotive industry,
civil engineering.

The evaluation of the possibilities of use of a structure with defects has been
undertaken in this paper. Numerically examined was a three-layered annular plate
with foam core and laminated, fibre-reinforced composite facings. The damages of
plate facings change the structure rigidity and generate the disturbance in the sym-
metry of the plate original structure. The responses of the analysed plate structure
to static and dynamic loads were evaluated considering different combinations of
facing damages caused by the failures of the laminate fibres or matrix.

The examinations of layered structures are still topical and are widely under-
taken. The area of the possible applications of the annular plates is extensive, for
example in: aerospace industry, mechanical and nuclear engineering, civil engi-
neering or miniature mechanical systems. The axisymmetric, dynamic stability of
additionally rotating sandwich plates with viscoelastic core under periodic radial
stress is presented in papers [1, 2]. The dynamic problem of vibrations of an annu-
lar plate with a characteristic microstructure and functionally graded properties is
presented in work [3]. The problem of axisymmetric buckling of laminated com-
posite circular and annular plates is presented in works [4, 5]. Three-dimensional
axisymmetric buckling of laminated annular plates, which consist of transversely
isotropic layers, has been analysed in that study.

The three-dimensional theory of elasticity was also used in the analysis of
axisymmetric deformation of a laminated transversely isotropic annular plate. The
exact solution corresponding to specified boundary conditions and plate dimensions
was presented in paper [6]. The axisymmetric vibrations of annular sandwich plates
with isotropic core and composite facings studied using the harmonic quadrature
method are presented in paper [7]. The effect of the shear deformation and rotatory
inertia in the core has been taken into account there.

The quasi-isotropic composite circular plate under quasi-static lateral load and
low-velocity impact tests is presented in paper [8]. The analysis was performedwith
the use of non-linear approximation method and the large deflection plate theory.
Analytical and finite-element results are compared with results of measurements.
The results show that the low-velocity impact responses are close to the quasi-
static behaviour of the plate. The fibre damage image, along with the damage
propagation from the centre of plate to the edge, are presented for plates of different
thicknesses.

The thin-walled sandwich rectangular plates with composite faces axially com-
pressed are studied in [9]. Local failure damage of sandwich structure is presented
using the finite element analysis. The transverse full symmetry in a plate of sand-
wich structure, which is composed of twomultilayered FRP (fibre reinforces plastic)
faces is examined.
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The bifurcational instability presented for rectangular plates made of fibrous
composite materials with reinforcement subjected to long-term damage is formu-
lated and solved in paper [10]. The problem of matrix cracking and delamination
in laminated composites is presented in work [11]. A model for prediction of the
propagation process of transverse cracks in polymer matrix composite laminates is
proposed. Different crack patterns are analysed. The failure model for simulation
of change in laminated composite plates is presented in [12]. Plates are subjected
to dynamic loading. Matrix cracking propagation is analysed numerically. Impact
test on FRP laminated plates confirms the effectiveness of the presented model.
The mathematical formulation for the modelling of damage in laminated composite
plates and shells is presented in works [13, 14]. The micromechanical model for
predicting the impact damage of composite laminas is proposed in [15]. The model
is based on the laminate microstructure and different failure models like: matrix
cracking, fibre breakage and delamination.

Numerical procedures to simulate the Lamb wave propagation in damaged
CFRP laminate are presented in [16]. The examined composite plate is under
low-velocity impact. The non-destructive testing method to characterize composite
material local damage is presented in [17].

Paper [18] presents the use of the finite element analysis procedure, which
is developed to predict the initiation and propagation of damages in laminated
composite plates. A second-order damage tensor represents damage of each lamina.
Constitutive relation takes the form where the elasticity tensor isn’t constant but
depends on the additional damage tensor. The obtained theoretical results in the
form of force-time history for an impact agree well with the experimental ones.
Approximate solutions for free vibration of asymmetrically laminated annular and
circular plates are presented in [19]. The plates have asymmetry due to either
hybridization and lay-up. The strength of laminates can be improved by high
compressive-strength fibres located in the regions where compressive failure is
predicted. The authors noticed the necessity to study the dynamic mechanical
properties of that group of composites with mid-plane asymmetry.

Presented in this paper examinations widen the analyses of the problems,
which concern the stability responses of the sandwich plates with undamaged and
damaged laminated, fibre-reinforced composite facings undertaken in papers [20–
22]. Static and dynamic responses of three-layered annular plate with undamaged
facings are presented in paper [20]. Examples of damaged facings in plate structures
in the forms of fibre or matrix cracks are analysed in papers [21, 22] for plates
statically and dynamically loaded, respectively. Examined plate cases are chosen
for these ones, whose structure is transversally symmetrical. It means that micro
defects located in facings are in the same places in both facings. In real structure,
the defects of the lamina could be distributed randomly and differently in the two
plate facings. An attempt to create the full image of plate stability responses is
shown in this paper. The results presented there concern the models with variously
damaged structures. Transversally asymmetrical forms are analysed with special
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attention. Some results are presented in [23]. The way of description of the damage
of laminate facings accepted in the analysis and also presented in this paper, uses
the mathematical formulae proposed in work [24], which modify the elements
stiffness matrix of composite structure.

According to the author knowledge, the problem of stability analysis of lami-
nated composite sandwich plates with both healthy and damaged laminas of facings
has not been sufficiently analysed. The analysed problem is theoretically interesting
and practically important.

2. Problem formulation

The presented composite, three-layered annular plate consists of thin, lam-
inated facings and a thicker foam core. Micro fibre or matrix cracks located in
facing laminas create the symmetrical or asymmetrical transversal geometry of
plate cross-structure. The plate is loaded in the plane of facings with static and
dynamic radially compressive forces uniformly distributed on its inner or outer
perimeter. In dynamic stability problem, the acting load quickly increases in time
according to the formula:

p = st; (1)

where: p – compressive stress, s – rate of loading growth, t – time.
The character of accepted loading is not a kind of impact, which would be the

case for loads acting within the time of 10�4�10�6 s. Then, the inertial forces in
the middle plane of the plate have not been taken into account.

The analysed plate examples are for plate model with slideably clamped edges.
The scheme of the analysed plate is presented in Fig. 1.

Fig. 1. Scheme of analysed plate

The evaluation of the dynamic critical parameters requires acceptation of the
plate stability criterion. As a criterion, the conditions presented by Volmir in work
[25] were adopted. According to this criterion, the loss of plate stability occurs at
the moment of time tcr , when the speed of the plate point of maximum deflection
wdcr reaches the first maximum value. The critical time tcr , determined after the
calculation operation shown in Eq. (1), expresses the value of the critical dynamic
load pcrdyn.
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Plate facings are composed of four laminas with fibres arranged according
to the code [0=�45=45=90]. The configuration of laminas fulfils the conditions of
quasi-isotropic composite allowing for the evaluation and the comparison between
the analysed structures of plate models.

The plate model, which is built using the finite elements, or for plates with
quasi-isotopic facings, is the result of the analytical and numerical solution, which
uses the finite difference method.

3. Model of fibrous composite and composite degradation

The stiffness matrix of laminate facings is expressed using the mechanical
relations for classical lamination theory [24, 26, 27]:
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where: Ai j , Bi j , Di j – extensional, coupling and bending stiffness, respectively,
Qi j – transformed reduced stiffness matrix of lamina, N – number of layers, zk and
zk�1 – coordinates in cross-section laminate of the outer surfaces of layer numbered
as k and k � 1 with thickness equal to tk , respectively.

The elastic, engineering constants E, G, � for configuration of quasi-isotropic
composite are expressed by the following formulae [26]:
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where: E – Young’s modulus, G – Kirchhoff’s modulus, � – Poisson’s ratio, t –
thickness of the laminate, A11, A12, A66 – extensional stiffness Ai j (i; j = 1, 2, 6).

The fibre or matrix cracks in plate facings change mechanical properties of
the laminate and the plate structure rigidity. The accepted model of the composite
degradation is based on the theory of correction parameter method presented in
work [24]. The mathematical essence of this method is based on the modification
of the stiffness matrix, whose form for undamaged lamina is expressed by the
following elements:
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It is assumed that the matrix crack eliminates the rigidity in the direction transverse
to the fibres. It is expressed by the correction parameter �. For the lamina with
matrix crack, the elements Q11, Q12, Q22 take the following new values:

Q11 = � � Q11 ; Q12 = Q22 = 0: (7)

When the fibre crack occurs, the stiffnessmatrixmodification is limited to replacing
the elements Q11 by Q22 [24]:

Q11 = Q22 : (8)

The analysed problem of plates with quasi-isotropic composite facings was
solved analytically an numerically using the orthogonalizationmethod and the finite
difference method (FDM), and only numerically using the finite element method
(FEM). FEM method makes it possible to observe the plates with quasi-isotropic
composite facings and exactly composite facings with damages. The examinations
were conducted for plate models with damage of facings in the forms of fibre or
matrix cracks of a single lamina or all laminas together.

4. Problem solution

The Finite Element Method (FEM) was the main method of the solution to
the problem. FEM plate models make it possible to observe the static and dynamic
stability behaviour of each of the examined structures: a composite without any
defects, treated as quasi-isotropic one, and a composite having fibre or matrix
cracks in selected facing laminas.

The proposed and presented in detail in works [20, 28–30] analytical and
numerical solution to the problem of static and dynamic plate stability has been
used to calculate the critical values of time, deflection and load for quasi-isotropic
example of the examined plate model. The observations were carried out both for
undamaged facings and for a complete damage in the form of fibre or matrix cracks
while the cross-section symmetry remains unchanged.

4.1. Using the Finite Element Method

The calculations were carried out using the ABAQUS system at the Academic
Computer Center CYFRONET-CRACOW (KBN/SGI_ORIGIN_2000/Płódzka/
030/1999). The full annulus plate model was built of 9-node shell elements and
27-node solid elements creating the mesh of the facing and the solid, respectively.
The outer surfaces of facings and core mesh elements are tied using the program
option expressed as surface contact interaction. The options of the programme:
Buckle and Dynamic were used for examining the static and dynamic stability
problem. The structural stiffness of plate facings was expressed by the elements of
matrixes Ai j , Bi j , Di j (2)�(4), which were calculated separately and introduced in
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the shell option of the ABAQUS system. When calculating the elements Ai j , Bi j ,
Di j; the lamina parameters were modified according to the analysed form of facing
failure.

4.2. Using the analytical and numerical problem solution

The solution is based on the classical theory of sandwich plates. The broken
line hypothesis and the division of stresses into normal loading for the plate facings
and shear load for the core have been accepted. Generally, the solution to the
problem of plate dynamic deflections uses: the dynamic equilibrium equations,
the linear physical relations, non-linear equations for facing geometry expressed
by the Kármán’s equations, the introduced stress function, the initial loading and
boundary conditions and the supported conditions. The basic differential equation
of plate deflections has the following form:
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where: H 0 = h0 + h2, k1 = 2D, k2 = 4Dr� + �k1, D =
Eh03

12(1 � �2)
, Dr� =

Gh03

12
– flexural rigidity of the outer layers, M = 2h0� + h2�2, E, G, � – Young’s
and Kirchhoff’s moduli and Poisson’s ratio of the facings material, respectively,
G2 – core Kirchhoff’s modulus, �, �2 – facing and core mass density, respectively,
h0, h2 – thickness of facing and core thickness, respectively, w, wd – total and
additional plate deflection, respectively, � – shape function.

In the solution, in order to obtain the basic differential system of equations of
plate deflections, we applied the shape functions of the additional plate deflections,
preliminary deflections and stress function. Platemodel has a preliminary deflection
expressed by the function fulfilling the conditions of the clamped edges. Some of
the dimensionless quantities, expressions and shape functions, are the following:
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�1(�; �; t) = X1(�; t) cos(m�); (11a)

�o (�; �) = �1�o (�) + �2�o (�) cos(m�); (11b)

F (�; �; t) = Fa (�; t) + Fb (�; t) cos(m�) + Fc (�; t) cos(2m�); (11c)

where: �1(�; �; t) – shape function of the additional plate deflection, �o (�; �) –
shape function of the preliminary plate deflection, F (�; �; t) – shape function of
the stress function, h = h1 + h2 + h3 – total thickness of the plate, m – the
number of the circumferential waves corresponding to the form of plate buckling,
�1, �2 – calibrating numbers, �o (�) = �4 + A1�

2 + A2�
2 ln � + A3 ln � + A4, Ai

– quantities fulfilling the conditions of the clamped edges by the function �o (�),
i = 1, 2, 3, 4, pcr – static, critical load. ro – outer radius of the annular plate,
t� – dimensionless time.

Then, approximation methods: ortogonalization and the finite differences
(FDM) were used for obtaining the following system of differential equations:

PU + Q = K � Ü; (12)

MY(V;Z)Y(V;Z) = QY(V;Z) ; (13)

MDD = MUU + MGG; (14)

MGGG = MGUU + MGDD; (15)

where: K – coefficient dependent on plate geometry, core material and loading
parameters,U,Y,V,Z – vectors of plate additional deflections and components Fa,
Fb, Fc of the stress function Fa;� = y, Fb = v, Fc = z, respectively,Q,QY,QV,QZ –
vectors of expressions composed of the initial and additional deflections, geometric
and material parameters, components of the stress function, dimensionless radius,
quantity b (b – length of the interval in the finite difference method), coefficients
�,  (�,  – differences of radial and circumferential displacements of the points
in middle surfaces of facings) and number m (m – number of circumferential
buckling waves), P,MD,MU,MG,MGG,MGU,MGD,MY,MV,MZ – matrices of
elements composed of plate parameters, quantity b and number m, D, G – vectors
of expressions composed of coefficients � and , respectively.

The system of Eqs. (12)�(15) was solved using the Runge-Kutta-Gill’s inte-
gration method for the initial state of the plate. Critical, static stress pcr has been
calculated solving the eigenproblem for the disk state task after neglecting the
inertial components and nonlinear expressions.

The engineering constants E, G, � describing the quasi-isotropic parameters
of composite facings, expressed by the Eqs. (5), were calculated separately using
the conditions and relations applied in lamination theory.
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5. Example analyses

The observations of the values of critical loads and plate buckling modes are
presented for the static stability problem and the dynamic one, separately. Similar,
accepted combinations of failures in the form of fibre or matrix cracks of facing
laminas have been analysed for plate models statically and dynamically loaded.
The results shown below create the image of the composite plate respond on the
character of the acting loads.

5.1. Plate and loading parameters

Geometry of the analysed three-layered, annular plate is determined by the fol-
lowing parameters: inner radius ri = 0:2 m, outer radius ro = 0:5 m, total thickness
of laminate facing h0 = 0:5 mm, thickness of the core middle layer h2 = 5 mm.
Each of the laminas has the thickness equal to h00 = 0:125 mm and creates the fac-
ing structure, which consists of the four laminas of fibrous laminate [0=�45=45=90]
(see, Fig. 2a). Material parameters of plate layers are the following: glass/epoxy
composite as a material of the facing lamina: E1 = 53:781 GPa, E2 = 17:927 GPa,
G12 = 8:964 GPa, �12 = 0:25, � = 2900 kg/m3 [31], polyurethane foam with the
values of Kirchhoff’s modulus G2 = 5 MPa, Poisson’s ratio �2 = 0:3 and mass
density �2 = 64 kg/m3 as the core material. The quasi-isotropic material of plate
facings is characterized by the calculated engineering constants E, G, � equal
to: E = 31:1 GPa, G = 12:5 GPa, � = 0:245. The correction parameter � (see,
Eq. (7)) in the accepted damage theory of composite facings is equal to � = 0:1
[24]. Fig. 2b shows the analysed examples of facing laminate structure. There were
taken into account the following cases: facing with all laminas undamaged, facing
with damaged lamina no. 1 (see, Fig. 2a) and facing with damages in all laminas in
the form of crack of fibre or matrix. In dynamic analysis, the plate model is loaded
with the rate of loading growth s (1) equal to: s = 4346 MPa/s for plates loaded on
inner edge and s = 931 MPa/s for plates loaded on outer edge.

crack of fibre in lamina no. 1  

crack of all fibres

crack of matrix in lamina no. 1

crack of all matrices

undamaged lamina

(a) (b)

Fig. 2. The configuration of laminate [0/–45/45/90] (a); the legend to graphic description of
laminate failure (b)
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Dynamic stability problem is focused on the observation of the plate models
with the numberm of circumferential bucklingwaves equal tom = 0 andm = 7. The
values obtained for FDM plate model with quasi-isotropic composite facings show
the elementary axisymmetrical m = 0 mode and asymmetrical, circumferentially
waved m = 7 one. Mode m = 7 corresponds to the minimal values of critical
dynamic loads pcrdyn of plates radially compressed on outer edge, respectively. The
values are presented in Table 1. The FDM calculations were carried out for number
N = 14 of discrete points.

Table 1.
Values of critical, dynamic loads pcrdyn with corresponding modes m of FDM plate model loaded

on outer edge

plate mode m 0 1 2 3 4 5 6 7 8 9

pcrdyn [MPa] 36.33 34.47 30.28 26.08 21.43 20.03 19.10 18.63 19.10 20.03

5.2. Static stability analysis

The values of critical static loads pcr of plate models loaded on inner or outer
edge are presented in Table 2. The chosen results are for the plates with the cracks
of matrix or fibres located in lamina 1 (see Fig. 2a) or located in two laminas
numbered 1 and 4 and for plates with all laminas damaged. The values of loads
pcr of plate models with different failures can be compared with those of the
undamaged plates. The presented results consider only transversally symmetrical
structures of plates. It has been assumed that the analysed examples of facings

Table 2.
The values of critical static loads pcr and buckling modes m for plates with symmetrically damaged

structure

static stability pcr [MPa] / m

damaged combination
crack of matrix crack of fibre

1 1 + 4 1 1 + 4

edge loading
inner 34.28 / 0 32.15 / 0 35.92 / 0 35.05 / 0

outer 12.90 / � 2 12.70 / 5 13.30 / � 2 13.86 / 6

damaged combination
crack of all matrices crack of all fibres

FDM model FEM model FDM model FEM model

edge loading
inner 33.64 / 0 27.54 / 0 37.77 / 0 33.46 / 0

outer 9.66 / 5 8.04 / 5 15.20 / 5 12.74 / 5

undamaged facings FDM model FEM model

edge loading
inner 38.89 / 0 36.84 / 0

outer 17.39 / 6 14.63 / 6



Stability state evaluation of composite three-layered annular plates . . . 49

defects are symmetrically arranged relative to the middle plate plane. The observed
buckling modes have the global, quasi-Eulerian form: axisymmetrical m = 0, with
m = 5, m = 6 numbers of circumferential waves or rotational irregular marked in
Table 2 as m � 2 (see, Fig. 3).

m = 0 m = 5 m = 6 m � 2
Fig. 3. Forms of plate buckling modes

Table 2 includes the values of critical static loads pcr obtained for the FDM
plate model with facings treated as a quasi-isotropic composite. The comparison of
values pcr calculated for FEM and FDM models shows that it is possible to use the
quasi-isotropic composite material model in evaluation of the static critical state
of a plate completely damaged.

The minimal values of critical, static load pcr are observed for the plate with
damaged laminate facings in the form of matrix crack. The values of loads pcr are
significantly lower than the values calculated for the plates without any defects.

Fig. 4 shows the distribution of the static, critical loads pcr of FEMplatemodels
dependent on the combination of damages in laminated facings. The accepted
pattern expresses the case of the examined damage (see Fig. 2b).

The presented results show the influence of the damaged laminas arrangement
on the plate buckling parameters. The examined FEM plate models are loaded
on inner or outer edge – see Fig. 4a and 4b, respectively. The graphical form of
results presentation makes it possible to observe the tendency in values of critical
loads pcr dependent on the different forms of damage and increasing rate of failure.
The presented changes are regular in directions indicated by lines. The results show
asymmetric form of damage as the one which can be intermediate in failure process
and also the other which does not correspond to the minimal value of critical load
pcr. The form of deflection of plate models loaded on inner edge is axisymmetric,
m = 0. The plate models compressed on outer edge with defects located in lamina
1 lose static stability in the form that is rotationally irregular, denoted as m � 2,
which is shown in Fig. 3. The circumferentially regular forms of the loss of plate
stability with the number m = 5 or m = 6 are shown in Fig. 4b. The minimal value
is observed for the plate with facings whose matrices are damaged in each of the
laminas. The damaged structure is symmetrical.

Shortly, the change in values of loads pcr is graphically presented in Fig. 5
for plates loaded on inner or outer edge. These are extreme examples of plates
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pcr=36.84 MPa

pcr=36.62 MPa

pcr=35.41 MPa pcr=31.86 MPa

pcr=35.92 MPa pcr=35.23 MPa pcr=33.46 MPa

pcr=36.17 MPa pcr=34.28 MPa pcr=31.33 MPa pcr=27.54 MPa

pcr=31.68 MPa

pcr=34.78 MPa

(a)

pcr=14.63 MPa 

pcr=14.10 MPa

pcr=13.65 MPa pcr=10.39 MPa

pcr=13.30 MPa pcr=13.18 MPa pcr=12.74 MPa

pcr=14.09 MPa pcr=12.90 MPa pcr=9.96 MPa pcr=8.04 MPa

pcr=13.16 MPa

pcr=9.98 MPa

m=6 m=5

m=5

m=5

m=5

(b)

Fig. 4. Distribution of values of critical, static loads pcr dependent on the form of structure failure
for plate loaded on inner edge (a), outer edge (b)
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with undamaged structure and completely destroyed one that have symmetrical
cross-section. The form of buckling is global.

pcr=36.84 MPa 

pcr=31.86 MPa

pcr=27.54 MPa

pcr=31.68 MPa

(a)

pcr=14.63 MPa 

pcr=10.39 MPa

pcr=8.04 MPa

pcr=9.98 MPa

m=6

m=5

m=5

m

(b)

Fig. 5. The graphical presentation of the values of critical, static loads pcr for plates loaded on inner
edge (a), outer edge (b)

The difference between the maximum one and minimum values of loads pcr
is in the range of several MPa. The sandwich structure of the analysed plate allows
for further working of the plate, but with a lower buckling capacity.

5.3. Dynamic stability analysis

The schemes of changes in values of dynamic, critical loads are presented in
Fig. 6 for the plates loaded on inner or outer edges. The examined plate examples
concern the healthy structure without any defects and the damaged structure with
the transversal symmetry or with transversal asymmetry of plate structure. The
cases of fibre or matrix cracks are considered, too. Similarly, like for the static
analysis, the results are arranged in the way which allows for observation of the
process of the plate facings failure. The examined example of the plates with
load quickly changing in time does not entirely confirm the regularity in changes of
values of critical loads, which has been observed for the plates statically compressed
in radial direction. The full lines shown in Fig. 6 confirm such changes, but the
results represented by dashed lines do not verify this regularity. Both for plates
loaded on inner or outer edge, the discussed regularity of changes in load values is
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observed for plateswithmatrix cracks. The examplary platewith facings completely
destroyed by matrix failure is the one, whose value of dynamic critical load is
minimal.

pcrd=140.81MPa

pcrd=143.42MPa

pcrd=143.42MPa pcrd=141.24MPa

pcrd=139.75MPa pcrd=132.77MPa pcrd=157.76MPa

pcrd=140.16MPa pcrd=128.21MPa pcrd=104.95MPa pcrd=103.43MPa

pcrd=119.54MPa

pcrd=128.37MPa

(a)

pcrd=64.23 MPa

pcrd=61.43 MPa

pcrd=61.43 MPa pcrd=64.23 MPa

pcrd=59.57 MPa pcrd=63.57 MPa pcrd=65.16 MPa

pcrd=61.43 MPa pcrd=57.94 MPa pcrd=55.02 MPa pcrd=52.59 MPa

pcrd=62.88 MPa

pcrd=60.92 MPa

(b)

Fig. 6. The distribution of values of critical, dynamic loads pcrd dependent on the form of structure
failure for plate loaded on inner edge (a), outer edge (b)
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The forms of plate bucking are not global. They are characterized by strong
local deformations localized close to the loaded edge. Fig. 7 shows the exemplary,
characteristic forms of critical deformations of damaged plates loaded on inner
or outer edge, respectively. The time histories of displacements and velocity of
displacements for the plate points with maximum deflections in opposite directions
are presented, too. The buckling form shown in Fig. 7a concerns the plate, whose
value of the critical dynamic load pcrdyn is equal to pcrdyn = 141:23 MPa. The plate
asymmetrical structure is composed of the upper facing fully damaged by matrix
cracks and the undamaged bottom facing. Whereas, Fig. 7b presents the dynamic
response of the plate compressed on outer edge, whose facings also have defects in
the form of matrix cracks located in lamina 1 (see, Fig. 2a) belonging to the upper
composite facing and in all, four laminas of bottom facing. The characteristic, global

(a)

(b)

Fig. 7. Time histories of deflection and velocity of deflection and buckling deformation for
plate: loaded on inner edge with damaged upper facing by matrix cracks and undamaged
bottom facing (a), loaded on outer edge with matrix cracks in lamina 1 of upper facing and

damaged bottom facing by matrix cracks (b)
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form of buckling for this plate loaded on outer edge, which is determined by the
expected number m = 7 of circumferential waves, is not observed. The plate loses
dynamic stability for the value of the critical load equal to: pcrdyn = 55:02 MPa.

Similarly, like in the static analysis, Fig. 8 shows the range of changes in values
of critical loads for plates with undamaged structure and damaged one, for whom
the value of load pcrdyn is minimal. Additionally, two intermediate plate cases have
been chosen, too. The difference in values of dynamic, critical loads is in the range
of a dozen or so MPa for plates loaded on inner edge and anywhere from ten to
twenty MPa for plates compressed on outer edge.

pcrd=140.81 MPa 

pcrd=141.24 M Pa

pcrd=103.43 M Pa

pcrd=119.54 MPa

(a)

pcrd=64.23 MPa 

pcrd=64.23 MPa

pcrd=52.59 MPa

pcrd=62.88 MPa

(b)

Fig. 8. The graphical presentation of the change of critical, dynamic loads pcrd for plates
loaded on inner edge (a), outer edge (b)

5.4. Comparison of numerical models

The evaluation of the correctness of the numerical calculations has been per-
formed through the comparison analysis of four platemodels. The exemplary results
are presented in Table 3. They pertain to the axisymmetrical plate compressed on
outer edge, whose facings are not damaged or the plate with facings completely
destroyed by the fibre cracks. The FEM basic model has been compared with a sim-
plistic one. The FEM simplistic model has been built of axisymmetrical elements:
3-node shell elements and 8-node solid ones creating the mesh of facing and solid,
respectively. This model allows for the numerical analysis of problems formulated
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for axisymmetrical plates. The comparisons of values of dynamic, critical loads
and forms of critical deformations, which show the strong deflection zone close
to loaded edge, present the correspondence between dynamic behaviours of both
plate models.

Table 3.
The critical state parameters of different axisymmetrical plate models loaded on outer edge with

undamaged facings and damaged ones by fibre cracks

plate
structure

FEM
basic model

FEM simplistic
model

FEM simplistic model
with quasi-isotropic
composite facings

FDM model with
quasi-isotropic

composite facings
pcrdyn [MPa]

71.21 77.26 35.40 36.33

undamaged
facings

 

pcrdyn [MPa]

69.81 71.67 34.00 31.67

damaged
all fibres

 

Additionally, an interesting evaluation can be made by the comparison of
the above results with the ones obtained for plate models whose facings material
is characterized by the parameters of quasi-isotropic composite. It concerns the
FEM simplistic model and FDM plate model obtained through the numerical and
analytical solution. The quasi-isotropic material parameters of plate facings with
damages in the form of fibre cracks are expressed by the following engineering
constants E, G, � equal to: E = 18:71 GPa, G = 7:9 GPa, � = 0:182. These
examples show the global form of plate dynamic buckling as the one for which the
corresponding critical load is much lower than that calculated for the plate with
facings modelled as a full fibrous composite. The good consistence of values of
critical loads of both plate FEM and FDM models indicates the possibility of the
practical and effective use of the proposed, approximated analytical and numerical
solution. Such a solution can be applied for transversally symmetrical plate structure
with undamaged facings or fully destroyed ones. The values of critical loads about
two times lower are calculated for FEM and FDMplate models with quasi-isotropic
composite facings. Within the scope of basic examination of buckling problem
these values can be treated as safe and useful to evaluate the buckling sensitivity of
analysed plate structure, effectively. The presented comparison is also meaningful
in modelling process of similar, layered plate structures.
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6. Conclusions

This paper presents an approach to the evaluation of the critical state of sand-
wich, annular plates with defective laminated fibre-reinforced composite facings.
The presented results and the behaviour images of the examined plates enable one
to evaluate the responses of non-ideal structures to acting loads. The stability be-
haviour of the composite plates with damaged layers creates the problem, for which
it is difficult to formulate general conclusions. Plates responses are ambiguous, so
the meaning of both the effective solution and experimental investigations is im-
portant. The decrease in values of the critical static and dynamic loads is observed
for plates with asymmetric failure of plate structure with facing damage having the
form of matrix cracks, however, minimal load values are observed for both facings
symmetrically destroyed. The forms of the loss of plate stability can not be global.
Particularly, local deformations close to the loaded edge are observed for dynami-
cally loaded plates with quickly changing load. The values of the critical dynamic
loads are higher than those calculated in static analysis. Quasi-isotropic simplistic
description of the composite plate facings does not show the real plate behaviour in
dynamic conditions. However, the values of the critical static loads of plates whose
all fibres or matrices are damaged show that they can be approximately calculated
for the plate models with facings treated as quasi-isotropic ones.

The presented results showing the critical responses of plates with different
parameters of transverse structure have significant, practical importance in the eval-
uation of the structure capacity. They show the ability of the three-layered plate to
work despite significant decrease in facings rigidity. The results presented graph-
ically with the graphical distribution of changes in values of static and dynamic
critical loads illustrate the process of the damaging of structure during its work. On
account of the possible wide range of applications of composite annular plates that
work in the conditions of variable loads in: automotive industry, aircraft industry,
civil engineering, the effective evaluation of the work capacity of non-ideal plate
structure has a practical meaning. It should be noticed that the presented analyses
should be confirmed by appropriate experimental investigations. Such investiga-
tions could be performed for a simpler element, for example, the composite beam
with laminas having selected damages in the form of matrix cracking or fibre
breakage.

Manuscript received by Editorial Board, October 23, 2018;
final version, January 23, 2019.
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